1
|
Zou F, Li Y, Zhang P. Enantiomer-Specific Pumping of Chiral Molecules. J Phys Chem Lett 2024; 15:10554-10559. [PMID: 39401177 DOI: 10.1021/acs.jpclett.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Enantiomer-specific state transfer (ESST), which involves transferring enantiomers with different handedness of a chiral molecule into different-energy internal states, is a challenging yet significant task. Previous ESST methods are based on dynamic processes and thus require the preparation of initial states and precise control of microwave operation times. We propose a novel ESST approach, called enantiomer-specific pumping (ESP), which is based on a dissipative process and thereby eliminates the need for these two technical requirements. This approach utilizes a special microwave-induced dark state that appears exclusively for the enantiomer with a specific handedness. Specifically, in ESP, the enantiomer lacking the dark state can be pumped out of the subspace of relevant internal states, while the enantiomer with the dark state maintains a finite probability within this subspace, offering high efficiency in ESST. Notably, ESP facilitates enantiodetection without the need for enantiopure samples as reference.
Collapse
Affiliation(s)
- Fen Zou
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Yong Li
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Peng Zhang
- Department of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| |
Collapse
|
2
|
Liu B, Li Y, Ye C, Sun CP. Pump-control approach to enantiospecific state transfer. OPTICS EXPRESS 2024; 32:28282-28292. [PMID: 39538648 DOI: 10.1364/oe.528182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/17/2024] [Indexed: 11/16/2024]
Abstract
Enantiospecific state transfer of chiral molecules is extremely important because enantiomers coexist in many biologically active compounds and play significantly different physiological, pharmacological, and biological roles. The inherently strong electric-dipole optical approaches based on the cyclic three-level model of chiral molecules have been extensively discussed. But, for the cases of large chiral molecules and/or chiral molecules of low asymmetry, the four-level model with two sub-loops is more realistic to describe the molecules. Based on the four-level model, we propose a pump-control approach to realize the highly efficient enantiospecific state transfer. In our approach, two pump pulses are applied to generate molecular coherence between the ground state and the first excited state of our working model. According to the coherence of the molecules, we adjust the phase and pulse area of the control pulse, then we obtain the highly efficient enantiospecific state transfer in the first excited working state. In addition, we further optimize the fraction of enantiopure samples by adjusting the area of the two pump pulses.
Collapse
|
3
|
Cheng JJ. Efficient spatial separation for chiral molecules via optically induced forces. J Chem Phys 2024; 161:034115. [PMID: 39023053 DOI: 10.1063/5.0207903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
We investigate an efficient spatial enantioseparation method of chiral molecules in cyclic three-level systems coupled with three optical fields using optically induced forces. When the overall phase differs by π between two enantiomers, significant variations in the magnitude and direction of the optically induced forces are observed. The manipulation of the center of mass of chiral molecules in optical fields can be achieved through the induced gauge force, primarily generated from the variations in the chirality-dependent scalar potentials created by the three inhomogeneous laser fields. By appropriately configuring the system, we can completely separate the slow spatial and fast inner dynamics, making instantaneous eigenstates of the inner Hamiltonian independent of the transverse profiles of the laser beams. Compared to previous methods, which required adiabatic conditions to be satisfied, the proposed method overcomes the limitations of the adiabatic approximation by utilizing a specific system configuration. This allows for increased flexibility in the transverse profiles of the laser beams and relaxes the constraints on the velocity of chiral molecules, leading to significantly greater spatial separations achievable across a broader range of parameters.
Collapse
Affiliation(s)
- Jian-Jian Cheng
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| |
Collapse
|
4
|
Cheng JJ, Du L, Li Y, Zhao N. Robust and high-efficiency dynamical method of enantio-specific state transfer. OPTICS EXPRESS 2024; 32:8684-8696. [PMID: 38571120 DOI: 10.1364/oe.502410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/02/2024] [Indexed: 04/05/2024]
Abstract
We propose a simple dynamical method to realize fast enantio-specific state transfer (ESST) of chiral molecules. Driven by three external electromagenetic fields, the chiral molecules are modeled as cyclic three-level systems, where the overall phase differs by π for the left- and right-handed chiral molecules. We unveil that the ESST is allowed when the amplitudes of three Rabi frequencies in the cyclic three-level systems are equal. Our method is robust and highly efficient in the sense that the external fields can have arbitrary waveforms. This thus provides the opportunity of simplifying the experimental implementations of ESST through pulse design.
Collapse
|
5
|
Mu X, Ye C, Zhang X. Machine-Learning Enhanced Enantioselective Single-Shot-Single-Molecule ac Stark Spectroscopy. J Phys Chem Lett 2023; 14:10067-10073. [PMID: 37916651 DOI: 10.1021/acs.jpclett.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Enantiodiscrimination with single-molecule and single-shot resolution is fundamental for the understanding of the fate and behavior of two enantiomers in chemical reactions, biological activity, and the function of drugs. However, molecular decoherence gives rise to spectral broadening and random errors, offering major problems for most chiroptical methods in arriving at single-shot-single-molecule resolution. Here, we introduce a machine-learning strategy to solve these problems. Specifically, we focus on the task of single-shot measurement of single-molecule chirality based on enantioselective ac Stark spectroscopy. We find that, in the large-decoherence region, where the ac Stark spectroscopy without machine learning fails to distinguish molecular chirality, in contrast, the machine-learning-assisted strategy still holds a high correct rate of up to about 90%. Beyond this overwhelming superiority, the machine-learning strategy also has considerable robustness against variation of the decoherence rates between the training and testing sets.
Collapse
Affiliation(s)
- Xiaowei Mu
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Chong Ye
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Xiangdong Zhang
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
6
|
Ye C, Sun Y, Fu L, Zhang X. Phase-matched locally chiral light for global control of chiral light-matter interaction. OPTICS LETTERS 2023; 48:5511-5514. [PMID: 37910690 DOI: 10.1364/ol.496226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Locally chiral light is an emerging tool for probing and controlling molecular chirality. It can generate large and freely adjustable enantioselectivities in purely electric-dipole effects, offering its major advantages over traditional chiral light. However, the existing types of locally chiral light are phase-mismatched, and thus the global efficiencies are greatly reduced compared with the maximum single-point efficiencies or even vanish. Here, we propose a scheme to generate phase-matched locally chiral light. To confirm this advantage, we numerically show the robust highly efficient global control of enantiospecific electronic state transfer of methyloxirane at nanoseconds. Our work potentially constitutes the starting point for developing more efficient chiroptical techniques for the studies of chiral molecules.
Collapse
|
7
|
Vaccaro PH, Xu Y. Virtual Issue on Chiroptical Spectroscopy. J Phys Chem A 2023; 127:7677-7681. [PMID: 37732338 DOI: 10.1021/acs.jpca.3c05566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Affiliation(s)
- Patrick H Vaccaro
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
8
|
Ko L, Cook RL, Whaley KB. Emulating Quantum Entangled Biphoton Spectroscopy Using Classical Light Pulses. J Phys Chem Lett 2023; 14:8050-8059. [PMID: 37652533 PMCID: PMC10510434 DOI: 10.1021/acs.jpclett.3c01714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
We show that for a class of quantum light spectroscopy (QLS) experiments using n = 0, 1, 2, ··· classical light pulses and an entangled photon pair (a biphoton state) where one photon acts as a reference without interacting with the matter sample, identical signals can be obtained by replacing the biphotons with classical-like coherent states of light, where these are defined explicitly in terms of the parameters of the biphoton states. An input-output formulation of quantum nonlinear spectroscopy is used to prove this equivalence. We demonstrate the equivalence numerically by comparing a classical pump-quantum probe experiment with the corresponding classical pump-classical probe experiment. This analysis shows that understanding the equivalence between entangled biphoton probes and carefully designed classical-like coherent state probes leads to quantum-inspired classical experiments that yield equivalent signals and provides insights for the future design of QLS experiments that could provide a true quantum advantage.
Collapse
Affiliation(s)
- Liwen Ko
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Robert L. Cook
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - K. Birgitta Whaley
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Izadyari M, Naseem MT, Müstecaplıoğlu ÖE. Enantiomer detection via quantum Otto cycle. Phys Rev E 2023; 107:L042103. [PMID: 37198840 DOI: 10.1103/physreve.107.l042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Enantiomers are chiral molecules that exist in right-handed and left-handed conformations. Optical techniques of enantiomers' detection are widely employed to discriminate between left- and right-handed molecules. However, identical spectra of enantiomers make enantiomer detection a very challenging task. Here, we investigate the possibility of exploiting thermodynamic processes for enantiomer detection. In particular, we employ a quantum Otto cycle in which a chiral molecule described by a three-level system with cyclic optical transitions is considered a working medium. Each energy transition of the three-level system is coupled with an external laser drive. We find that the left- and right-handed enantiomers operate as a quantum heat engine and a thermal accelerator, respectively, when the overall phase is the control parameter. In addition, both enantiomers act as heat engines by keeping the overall phase constant and using the laser drives' detuning as the control parameter during the cycle. However, the molecules can still be distinguished because both cases' extracted work and efficiency are quantitatively very different. Accordingly, the left- and right-handed molecules can be distinguished by evaluating the work distribution in the Otto cycle.
Collapse
Affiliation(s)
- Mohsen Izadyari
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
| | - M Tahir Naseem
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Türkiye
| |
Collapse
|
10
|
Cai MR, Ye C, Dong H, Li Y. Enantiodetection of Chiral Molecules via Two-Dimensional Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:103201. [PMID: 36112446 DOI: 10.1103/physrevlett.129.103201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Enantiodetection of chiral molecules is important to chemical reaction control and biological function designs. Traditional optical methods of enantiodetection rely on the weak magnetic-dipole or electric-quadrupole interactions, and in turn suffer from the weak signal and low sensitivity. We propose a new optical enantiodetection method to determine the enantiomeric excess via two-dimensional (2D) spectroscopy of the chiral mixture driven by three electromagnetic fields. The quantities of left- and right-handed chiral molecules are reflected by the intensities of different peaks on the 2D spectrum, separated by the chirality-dependent frequency shifts resulting from the relative strong electric-dipole interactions between the chiral molecules and the driving fields. Thus, the enantiomeric excess can be determined via the intensity ratio of the peaks for the two enantiomers.
Collapse
Affiliation(s)
- Mao-Rui Cai
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Chong Ye
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Yong Li
- Beijing Computational Science Research Center, Beijing 100193, China
- Center for Theoretical Physics and School of Science, Hainan University, Haikou 570228, China
- Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Zou F, Chen YY, Liu B, Li Y. Enantiodiscrimination of chiral molecules via quantum correlation function. OPTICS EXPRESS 2022; 30:31073-31085. [PMID: 36242198 DOI: 10.1364/oe.466143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
We propose a method to realize enantiodiscrimination of chiral molecules based on quantum correlation function in a driven cavity-molecule system, where the chiral molecule is coupled with a quantized cavity field and two classical light fields to form a cyclic three-level model. According to the inherent properties of electric-dipole transition moments of chiral molecules, there is a π-phase difference in the overall phase of the cyclic three-level model for the left- and right-handed chiral molecules. Thus, the correlation function depends on this overall phase and is chirality-dependent. The analytical and numerical results indicate that the left- and right-handed chiral molecules can be discriminated by detecting quantum correlation function. Our work opens up a promising route to discriminate molecular chirality, which is an extremely important task in pharmacology and biochemistry.
Collapse
|