1
|
Lai X, Zhang X, Lai J, Zhao W, Song Z, Chen Y, Ud din M, Munawer MF, Jiang H, Liu X, Wang X. Targeted self-assembled anti-NFκB AuNCs-aptamer nanoplatform for precise theranostics via tailored follicle regeneration. Mater Today Bio 2025; 32:101774. [PMID: 40290889 PMCID: PMC12032944 DOI: 10.1016/j.mtbio.2025.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
NFκB is a vital transcription factor for the regulation of hair follicle cycle. As a therapeutic target, NFκB is specifically blocked by RNA aptamer with negligible side effects, but the targeted transmembrane transport of anti-NFκB aptamer remains a challenge due to its negative charge under physiological conditions. In this study, taking advantage of the depilation-induced oxidative stress microenvironment (OSM), it was confirmed for the first time that self-assembled gold nanoclusters and aptamer (AuNCs-Aptamer) complexes formed in the skin and enhanced the therapeutic effect of anti-NFκB aptamer drugs, effectively blocking the NFκB-mediated inflammatory response and inhibiting hair follicle regeneration. The hematoxylin-eosin (HE) staining of tissue section and hematology analysis demonstrated that OSM-responsive self-assembled AuNCs-Aptamer caused no toxicity to the living organism. Moreover, self-assembly occurred only in the oxidative stress-injured skin cells rather than the normal cells, which revealed that this self-assembly was a targeted, safe and effective therapy for hypertrichosis.
Collapse
Affiliation(s)
- Xiangdong Lai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyang Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiejuan Lai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weiwei Zhao
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar, Xinjiang, 843300, China
| | - Zhongquan Song
- Department of Pulmonary and Critical Care Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuanyuan Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Miraj Ud din
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Muhammad Faizan Munawer
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Halawa MI, Belal F, Salem AA, Su L, Zhang X. Ultrasensitive platform for the determination of biothiols using aggregation-induced emission of gold-cysteine nanosheets. Biosens Bioelectron 2025; 272:117131. [PMID: 39764980 DOI: 10.1016/j.bios.2025.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates. These new findings of Aggregation-Induced Luminescence Enhancement (AIEE) and Aggregation-Induced Circular Dichroism Enhancement (AICE) were attributed to multiple interactions involved such as Au-S bonding, stacked H-bonding, and strong aurophilic Au(I)···Au(I), ligand-metal-charge-transfer (LMCT) and ligand-metal-metal-charge-transfer (LMMCT). The AIEE phenomenon of the fabricated Au(I)-Cys NSs was utilized for developing a highly sensitive luminescent platform for determining homocysteine (Hcy), cysteine (Cys), and glutathione (GSH) biothiols in human serum. The developed platform is simple, fast, sensitive, and highly selective for the determination of biothiols through the concentration ranges of (0.25-100.0 μM), (0.625-40.0 μM), and (5.00-600.0 μM), with a lower detection limit (S/N = 3:1) of 0.15, 0.10 and 1.20 μM for Hcy, Cys, and GSH; respectively. Interestingly, irradiation of Au(I)-Cys NSs with a high-energy electron beam during TEM analysis led to an in-situ transformation of the Au(I)-Cys NSs into gold nanoclusters (AuNCs). This phenomenon provided an innovative bottom-up strategy for the synthesis of AuNCs that could be employed in various biological and therapeutic applications. Optimization of the applied voltage and electron beam's exposure time has been found effective in synthesizing precisely designed and size-controlled AuNCs.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Alaa A Salem
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Lei Su
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Arshad A, Ding L, Akram R, Long L, Wang K. Single-Ligand Modulated Size-Dependent Multi-Color Au/Os Nanoclusters for Multi-Analyte Detection. Anal Chem 2025; 97:5179-5190. [PMID: 39994204 DOI: 10.1021/acs.analchem.4c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The development of nanoclusters (NCs) capable of multicolor emissions for simultaneous detection of multiple analytes has aroused tremendous interest. However, the current methods for synthesizing NCs with multicolor emissions mainly depend on a multiple ligand strategy, which not only compromises the stability of the NCs but also alters their physicochemical properties. Herein, we propose a novel strategy for designing single-ligand capped bimetallic Au/Os NCs with multicolor fluorescence by adjusting the size of the NCs. This size-controlled, single-ligand encapsulation strategy not only enhances their stability and compatibility but also ensures uniformity in their physicochemical properties, thereby overcoming limitations inherent in multiligand systems. By meticulously modulating the reaction parameters, we achieved precise tuning of the NCs size, resulting in the synthesis of multicolor fluorescent NCs displaying blue (465 nm), green (507 nm), and yellow (560 nm) emissions. These multicolor Au/Os NCs were then incorporated into an array system for the differentiation of tetracyclines (TCs) by virtue of their interaction with TCs through the inner filter effect (IFE). Finally, each TC elicited a unique fluorescent response, which was subsequently analyzed by principal component analysis. The sensor array has been successfully employed for detection of TCs in milk, urine, and water, demonstrating its practical application potential. The strategy developed in this work holds great promise for the development of multicolor NCs.
Collapse
Affiliation(s)
- Anila Arshad
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Raheel Akram
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
4
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
5
|
Madhu M, Tsai MY, Hsieh MM, Lin EY, Tseng WB, Lu CY, Tseng WL. Thiol-linked hyaluronic acid-mediated encapsulation of RCR-stabilized gold nanoclusters for hyaluronidase sensing and cellular imaging. Carbohydr Polym 2025; 349:123038. [PMID: 39638499 DOI: 10.1016/j.carbpol.2024.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Encapsulating peptide-stabilized gold nanoclusters (AuNCs) with thiolated hyaluronic acid (HA-SH) and selectively adding cysteine to the peptide sequence increased their photoluminescence. We found that peptide compositions with cysteine in the middle emitted the most. RCR-stabilized AuNCs can be purified using size-exclusion chromatography to characterize their optical characteristics, chemical composition, and possible structure. Our findings show that RCR-stabilized AuNCs have a unique chemical structure, microsecond photoluminescence lifetime, good quantum yield, and near-infrared emission peak. Due to Au-S bonding and electrostatic interactions, RCR-stabilized AuNCs were encapsulated with HA-SH to create nanocomposites. HA-SH-AuNCs had a longer emission peak, greater particle size, and better photostability than RCR-stabilized AuNCs. HAase break down HA in HA-SH-AuNCs, changing their structure and size. Thus, centrifugation makes it easier to separate HA-SH-AuNCs from HAase-digested ones. Similar to earlier sensors, HA-SH-AuNCs have great sensitivity and selectivity for HAase, with a linear range of 0.5-6.0 U/mL and a detection limit of 0.39 U/mL. They were useful for urine HAase determination, with spike recovery of 103 % to 107 %. HA-SH-AuNCs further served as a platform for targeted imaging of CD44 receptor-expressing cancer cells, demonstrating bioimaging and clinical diagnostic potential.
Collapse
Affiliation(s)
- Manivannan Madhu
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Meng-Yuan Tsai
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Ming-Mu Hsieh
- Department of Chemistry, National Kaohsiung Normal University, No.62, Shenjhong Rd., Yanchao District, Kaohsiung City 82446, Taiwan
| | - En-Yu Lin
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Department of Environmental Engineering, Da-Yeh University, No.168, University Road, Dacun, Changhua 515006, Taiwan
| | - Chi-Yu Lu
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., 80708 Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Dou X, Saalah S, Chiam CK, Xie J, Sipaut CS. Ultrasmall metal nanoclusters as efficient luminescent probes for bioimaging. J Mater Chem B 2025; 13:1180-1194. [PMID: 39679535 DOI: 10.1039/d4tb02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs' functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs' luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.
Collapse
Affiliation(s)
- Xinyue Dou
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Chel-Ken Chiam
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Coswald Stephen Sipaut
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| |
Collapse
|
7
|
Li J, Xie H, Sun D, Li H, Xin X. Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response. SMALL METHODS 2025:e2401782. [PMID: 39797428 DOI: 10.1002/smtd.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH4)6[Ag6(mna)6] (H2mna = 2-mercaptonicotinic acid, abbreviated to Ag6─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C60─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C60─OH, which provides a feasible basis for realizing the NLO response. Then, the co-assemblies are doped into a PMMA matrix to prepare composite film and its NLO properties are evaluated by Z-scan technique. Remarkably, the effective nonlinear absorption coefficients β is of two orders magnitude higher than those of the Ag6─NCs assemblies at the absence of C60─OH. This work showcases a new approach for amplifying NLO responses which greatly facilitates the development of integrated photonic devices.
Collapse
Affiliation(s)
- Jinrui Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Huiyan Xie
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Di Sun
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hongguang Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
8
|
Mahata S, Sahoo SR, Mukhopadhyay A, Kumari K, Rakshit S, Goswami N. Tailoring the photoluminescence of AIE-type gold nanoclusters via biomineralization-inspired polymorphism. NANOSCALE 2025; 17:823-832. [PMID: 39584541 DOI: 10.1039/d4nr04022h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Tailoring the aggregation-induced emission (AIE) characteristics of well-defined metal nanoclusters (MNCs) is highly sought after for numerous practical applications. Studies have primarily focused on assembling AIE-type MNCs using monomorphic molecules. Achieving polymorphic assemblies, with different molecular arrangements could provide valuable insights into the role of external molecular matrices on the photoluminescence (PL) behaviour of these NCs. In this study, by mimicking biomineralization, we successfully embedded AIE-type Au22SG18 NCs within different polymorphic environments of CaCO3. Upon incorporation into CaCO3 matrices such as, calcite, vaterite and a mixture of both, the PL was enhanced in all the inorganic composites accompanied by a significant blue shift. In the metastable vaterite matrix, Au22SG18 NCs exhibited the highest blue shift in the PL spectrum while in the stable crystalline matrix of calcite, the NCs showed the highest PL intensity as well as excited state lifetime. Time-resolved spectroscopic and single-molecule Raman studies revealed that variations in the PL of NCs are linked to the stability of their polymorphic structures, progressing from vaterite to a vaterite/calcite mixture, and finally to calcite. These findings shed light on the crucial role of external molecular arrangement in the AIE behaviour of MNCs.
Collapse
Affiliation(s)
- Sukhendu Mahata
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Satya Ranjan Sahoo
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Arun Mukhopadhyay
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Bera D, Mahata S, Biswas M, Kumari K, Rakshit S, Nonappa, Ghosh S, Goswami N. Efficient Photocatalytic Hydrogen Production Using In-Situ Polymerized Gold Nanocluster Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406551. [PMID: 39562172 DOI: 10.1002/smll.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Gold nanoparticles (NPs) are widely recognized as co-catalysts in semiconductor photocatalysis for enhancing hydrogen production efficiency, but they are often overlooked as primary catalysts due to the rapid recombination of excited-state electrons. This study presents an innovative gold-based photocatalyst design utilizing an in situ dopamine polymerization-guided assembly approach for efficient H2 generation via water splitting. By employing gold superclusters (AuSCs; ≈100 nm) instead of ultra-small gold nanoclusters (AuNCs; ≈2 nm) before polymerization, unique nanodisk-like 3D superstructures consisting of agglomerated 2D polydopamine (PDA) nanosheets with a high percentage of uniformly embedded AuNCs are created that exhibit enhanced metallic character post-polymerization. The thin PDA layer between adjacent AuNCs functions as an efficient electron transport medium, directing excited-state electrons toward the surface and minimizing recombination. Notably, the AuSCs@PDA structure shows the largest potential difference (26.0 mV) compared to AuSCs (≈18.4 mV) and PDA NPs (≈14.6 mV), indicating a higher population of accumulated photo-generated carriers. As a result, AuSCs@PDA achieves a higher photocurrent density, improved photostability, and lower charge transfer resistance than PDA NPs, AuSCs, or AuNCs@PDA, with the highest hydrogen evolution rate of 3.20 mmol g-1 h-1. This work highlights a promising in situ polymerization strategy for enhancing photocatalytic hydrogen generation with metal nanoclusters.
Collapse
Affiliation(s)
- Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sukhendu Mahata
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maitrayee Biswas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Srabanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Dou X, Saalah S, Chiam CK, Xie J, Sipaut CS. Modulating the photodynamic modality of Au 22 nanoclusters through surface conjugation of arginine for promoted healing of bacteria-infected wounds. NANOSCALE 2024; 16:20089-20099. [PMID: 39392361 DOI: 10.1039/d4nr03278k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Developing novel antibacterial agents without drug resistance is highly desired but challenging. In this study, an Au nanocluster (NC)-based photodynamic antibacterial agent with aggregation-induced emission (AIE) has been designed to promote the healing of bacteria-infected wounds by conjugating arginine (Arg) on the surface of Au22 NCs. The conjugation of Arg not only endows the NCs with enhanced visible light absorption, increased photoluminescence (PL) intensity, and prolonged PL lifetime, but it also enables switching the photodynamic production mode of reactive oxygen species (ROS) and extra production of reactive nitrogen species (RNS). These enhancements allow the Arg-Au22 NCs to combine ROS/RNS-mediated antibacterial action with the enhanced inherent antibacterial properties of Au NCs, resulting in outstanding antibacterial efficacy against both Gram-negative and Gram-positive bacteria. In vivo experiments demonstrate the effective treatment of bacteria-infected wounds by the Arg-Au22 NCs, leading to the photodynamic eradication of bacterial infections and reduced inflammation in the wound area without causing systemic harm or impairing blood and liver functions. This study introduces a novel approach to designing metal NC-based photodynamic antibacterials with multiple antibacterial actions, contributing to deeper understanding of ROS/RNS-mediated antibacterial mechanisms, and future utilization of metal NCs in antibacterial therapies.
Collapse
Affiliation(s)
- Xinyue Dou
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Chel-Ken Chiam
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Coswald Stephen Sipaut
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| |
Collapse
|
11
|
Barnwal N, Nandi N, Sarkar P, Sahu K. White Light Emission from Zn(II) and DMSO-Induced Copper Nanocluster Assembly. Chem Asian J 2024; 19:e202400633. [PMID: 39031487 DOI: 10.1002/asia.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
An assembly of metal nanoclusters driven by appropriate surface ligands and solvent environment may engender entirely new photoluminescence (PL). Herein, we first synthesize histidine (His) stabilized copper nanoparticles (CuNPs) and, subsequently, copper nanoclusters (CuNCs) from it using 3-mercaptopropionic acid (MPA) as an etchant. The CuNCs originally emit bluish-green (λem=470 nm) PL with a low quantum yield (QY∼1.8 %). However, it transformed into a dual-emissive nanocluster assembly (Zn-CuNCs) in the presence of Zn(II) salt, having a distinct blue emission band (λem=420 nm) and a red emission band (λem=615 nm) with eight times QY (∼9.1 %) enhancement. The temperature-dependent emission spectra of Zn-CuNCs depicted that the blue emission band persists for all the temperature ranges (0-80 °C) while the red emission band vanishes at high temperatures (70-80 °C). Thus, the blue emission may originate from the locally excited state (LES) emission of the nanoclusters, while the red emission originates from through-space interaction (TSI) and Cu(I)…Cu(I) interaction within the assembly. Adding dimethyl sulfoxide (DMSO) further modifies the emission intensities; the red band was amplified four times, while the blue band was diminished by 2.5 times. The transmission electron microscopy (TEM) images unveiled that the Zn-CuNCs are a large assembly of tiny nanoclusters, which become more compact in DMSO. The blue emission possesses steady-state fluorescence anisotropy, while the red emission shows no anisotropy. Further, near-perfect white light emission(WLE) was rendered with CIE coordinates of (0.33, 0.32) by combining the dual emission of the Zn-CuNCs with the original green emission of the CuNCs.
Collapse
Affiliation(s)
- Neha Barnwal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
12
|
Mukhopadhyay A, Mahata S, Goswami N. Molecular Packing-Driven Manipulation of Aggregation Induced Emission in Gold Nanoclusters. J Phys Chem Lett 2024; 15:8510-8519. [PMID: 39133781 DOI: 10.1021/acs.jpclett.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A key limitation of supramolecular force-driven molecular assembly in aggregation-induced emission (AIE) materials is the need to precisely regulate molecular interactions within the assembly. Achieving such assemblies with in situ manipulable molecular arrangements could provide valuable insights into the role of molecular forces in AIE. Herein, by using glutathione-protected gold nanoclusters (AuNCs) as a model AIE material and a naturally occurring polyphenol, tannic acid (TA), as the assembling agent, we demonstrate that assemblies dominated by covalent bonds and hydrogen bonding show enhanced AIE, while those dominated by π-π stacking promote charge transfer, resulting in significant photoluminescence (PL) quenching. This phenomenon primarily stems from the oxidation of TA into smaller aromatic ring structures, leading to an increase in π-π interactions. The complete in situ oxidation of TA within the assembly induces a morphological transition from 3-D spherical to 2-D sheet-like structures due to the dominance of π-π interactions, consequently resulting in complete PL quenching of AuNCs. These findings highlight the critical role of molecular packing in modulating the AIE properties of AuNCs.
Collapse
Affiliation(s)
- Arun Mukhopadhyay
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukhendu Mahata
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Tiwari V, Bhattacharyya A, Karmakar T. A molecular dynamics study on the ion-mediated self-assembly of monolayer-protected nanoclusters. NANOSCALE 2024; 16:15141-15147. [PMID: 39081010 DOI: 10.1039/d4nr02427c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We studied the effects of metal and molecular cations on the aggregation of atomically precise monolayer-protected nanoclusters (MPCs) in an explicit solvent using atomistic molecular dynamics simulations. While divalent cations such as Zn2+ and Cd2+ promote aggregation by forming ligand-cation-ligand bridges between the MPCs, molecular cations such as tetraethylammonium and cholinium inhibit their aggregation by getting adsorbed into the MPC's ligand shell and reducing the ligand's motion. Here, we studied the aggregation of Au25(SR)18 nanoclusters with two types of ligands, para-mercaptobenzoic acid and D-penicillamine, as prototypical examples.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Anushna Bhattacharyya
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
14
|
Lin H, Song X, Wu X, Cao Y, Liu Z, Zhang R, Yao Q, Xie J. Fluorescent Enhancement of [AgS 4] Microplates by Mechanical Force Induced Crystallinity Breaking. J Phys Chem Lett 2024; 15:7118-7124. [PMID: 38959028 DOI: 10.1021/acs.jpclett.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mechanofluorochromic materials are a type of "smart" material because of their adjustable fluorescent properties under external mechanical force, making them significant members of the materials family. However, as the fluorescent characteristics of these materials highly depend on their microstructures, the still insufficiently in-depth research linking molecular structures to light emission motivates researchers to explore the fluorescent properties of these materials under external stimuli. In this work, based on synthetic [AgS4] microplates, we explore a fascinating mechanical-induced photoluminescent enhancement phenomenon. By applying mechanical force to solid-state [AgS4] to damage the surface morphology, a significant enhancement in photoluminescence is observed. Moreover, the emitted intensity increases with the extent of damage, which can be attributed to alterations in crystallinity. This work provides valuable insights into the relationship among photoluminescence, crystallinity, and mechanical force, offering new strategies for designing luminescent devices.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Science drive 3, Singapore 117543, Singapore
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs; Engineering Research Center of MTEES (Ministry of Education), and Key Lab of ETESPG (GHEI), School of Chemistry South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
15
|
Mukhopadhyay A, Sahoo SR, Mahata S, Goswami N. Strategic framework for harnessing luminescent metal nanocluster assemblies in biosensing applications. Anal Bioanal Chem 2024; 416:3963-3974. [PMID: 38814345 DOI: 10.1007/s00216-024-05353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The distinctive physicochemical attributes of ultra-small metal nanoclusters (MNCs) resembling those of molecules make them versatile constituents for self-assembled frameworks. This critical review scrutinizes the influence of assembly on the photoluminescence (PL) properties of MNCs and investigates their utility in biosensing applications. The investigation is initiated with an assessment of the shift from individual MNCs to assemblies and its repercussions on PL efficacy. Subsequently, two distinct biosensing modalities are explored: assembly-driven detection mechanisms and detection predicated on structural modifications in assembled MNCs. Through meticulous examination, we underscore the potential of self-assembly methodologies in tailoring the PL behavior of MNCs for the detection of diverse biological analytes and diseases.
Collapse
Affiliation(s)
- Arun Mukhopadhyay
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India
| | - Satya Ranjan Sahoo
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India
| | - Sukhendu Mahata
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India
| | - Nirmal Goswami
- CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, 751013, India.
- Academy of Scientific & Innovative Research, Ghaziabad, 201 002, India.
| |
Collapse
|
16
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
17
|
Agrawal S, Rai S, Mahato P, Ali A, Mukherjee S. Assemble-Disassemble-Reassemble Dynamics in Copper Nanocluster-Based Superstructures. J Phys Chem Lett 2024:4880-4889. [PMID: 38682648 DOI: 10.1021/acs.jpclett.4c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Assembling metal nanoclusters (MNCs) to form superstructures generates exciting photophysical properties distinct from those of their discrete precursors. Controlling the assembly process of MNCs and understanding the assembly-disassembly dynamics can have implications in achieving the reversible self-assembly of MNCs. The formation of self-assembled copper nanoclusters (CuNCs) as homogeneous superstructures and the underlying mechanisms governing such a process remain unexplored. Smart molecular imprinting of surface ligands can establish the forces necessary for the formation of such superstructures. Herein, we report highly luminescent, ordered superstructures of 4-phenylimidazole-2-thiol (4-PIT)-protected CuNCs with the help of l-ascorbic acid as a secondary ligand. Through a comprehensive spectroscopic analysis, we deciphered the mechanism of the self-assembly process, where the role of interligand H-bonding and C-H-π interactions was established. Notably, efficient reversibility of assembly-disassembly was demonstrated by re-establishing the interligand interactions and regenerating their photophysical and morphological signatures.
Collapse
|
18
|
Bhunia S, Mukherjee M, Purkayastha P. Fluorescent metal nanoclusters: prospects for photoinduced electron transfer and energy harvesting. Chem Commun (Camb) 2024; 60:3370-3378. [PMID: 38444358 DOI: 10.1039/d4cc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Research on noble metal nanoclusters (MNCs) (elements with filled electron d-bands) is progressing forward because of the extensive and extraordinary chemical, optical, and physical properties of these materials. Because of the ultrasmall size of the MNCs (typically within 1-3 nm), they can be applied in areas of nearly all possible scientific domains. The greatest advantage of MNCs is the tunability that can be imposed, not only on their structures, but also on their chemical, physical, and biological properties. Nowadays, MNCs are very effectively used as energy donors and acceptors under suitable conditions and hence act as energy harvesters in solar cells, semiconductors, and biomarkers. In addition, ultrafast photoinduced electron transfer (PET) can be practised using MNCs under various circumstances. Herein, we have focused on the energy harvesting phenomena of Au-, Ag-, and Cu-based MNCs and elaborated on different ways to apply them.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel.
| | - Manish Mukherjee
- Department of Chemistry & Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
19
|
Biswas S, Negishi Y. A Comprehensive Analysis of Luminescent Crystallized Cu Nanoclusters. J Phys Chem Lett 2024; 15:947-958. [PMID: 38252029 PMCID: PMC10839905 DOI: 10.1021/acs.jpclett.3c03374] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) emission is an intriguing characteristic displayed by atomically precise d10 metal nanoclusters (NCs), renowned for their meticulous atomic arrangements, which have captivated the scientific community. Cu(I) NCs are a focal point in extensive research due to their abundance, cost-effectiveness, and unique luminescent attributes. Despite similar core sizes, their luminescent characteristics vary, influenced by multiple factors. Progress hinges on synthesizing new NCs and modifying existing ones, with postsynthetic alterations impacting emission properties. The rapid advancements in this field pose challenges in discerning essential points for excelling amidst competition with other d10 NCs. This Perspective explores the intricate origins of PL emission in Cu(I) NCs, providing a comprehensive review of their correlated structural architectures. Understanding the mechanistic origin of PL emission in each cluster is crucial for correlating diverse characteristics, contributing to a deeper comprehension from both fundamental and applied scientific perspectives.
Collapse
Affiliation(s)
- Sourav Biswas
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
20
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
21
|
Ahmadi-Sangachin E, Mohammadnejad J, Hosseini M. Fluorescence self-assembled DNA hydrogel for the determination of prostate specific antigen by aggregation induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123234. [PMID: 37582316 DOI: 10.1016/j.saa.2023.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
In this study, an aptamer-based, functionalized-DNA hydrogel system is developed for prostate-specific antigen (PSA) detection. A pure DNA hydrogel is constructed using specific DNA building blocks and an aptamer as a cross-linker. Firstly, silver nanoclusters (AgNCs) are constructed on the Y-shaped DNA (Y-DNA) building blocks. Then, the DNA hydrogel was formed via the addition of the cross-linker to the Y-DNA solution. In this case, the fluorescence emission of silver nanoclusters that have accumulated in the hydrogel increases due to aggregation-induced emission (AIE). The presence of PSA and its subsequent interaction with its specific aptamer dissolve the hydrogel structures, which leads to a low emission intensity. A great linear relationship was attained in this assay in the range of 0.05 to 8 ng mL-1 with a detection limit of 4.4 pg mL-1 for the detection of PSA. Additionally, the proposed aptasensor was successfully used to detect PSA in human serum samples. The recovery for different concentrations of PSA was in the range of 96.1% to 99.3%, and the RSD range was from 2.3% to 4.5%. Comparing our method to current ones in the field of PSA detection proves that our platform benefits from a simpler procedure, lower cost, and better efficiency, providing high potential for future clinical applications.
Collapse
Affiliation(s)
- Elnaz Ahmadi-Sangachin
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran.
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran; Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Shen J, Fan Z. Ce 4+/Ce 3+ as the switch of AIE-copper nanoclusters for highly selective detection of ascorbic acid in soft drinks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123070. [PMID: 37390716 DOI: 10.1016/j.saa.2023.123070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
An ultrasimple "turn-on" sensor for indirectly detecting ascorbic acid (AA) was prepared using N-acetyl-L-cysteine stabilized copper nanoclusters (NAC-CuNCs) via the AIE (aggregation-induced emission) effect controlled by Ce4+/Ce3+ redox reaction. This sensor fully utilizes the different properties of Ce4+ and Ce3+. Non-emissive NAC-CuNCs were synthesized by a facile reduction method. NAC-CuNCs easily aggregate in the presence of Ce3+ due to AIE, resulting in fluorescence enhancement. However, this phenomenon cannot be observed in the presence of Ce4+. Ce4+ possesses strong oxidizing ability and produces Ce3+ by reacting with AA via a redox reaction, followed by switching on the luminescence of NAC-CuNCs. Moreover, the fluorescence intensity (FI) of NAC-CuNCs increases with the concentration of AA in the range of 4-60 µM, with the limit of detection (LOD) as low as 0.26 µM. This probe with excellent sensitivity and selectivity was successfully used in the determination of AA in soft drinks.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China; Department of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China.
| |
Collapse
|
23
|
Bain D, Russier-Antoine I, Yuan H, Kolay S, Maclot S, Moulin C, Salmon E, Brevet PF, Pniakowska A, Olesiak-Bańska J, Antoine R. Solvent-Induced Aggregation of Self-Assembled Copper-Cysteine Nanoparticles Reacted with Glutathione: Enhancing Linear and Nonlinear Optical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16554-16561. [PMID: 37947385 DOI: 10.1021/acs.langmuir.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper-thiolate self-assembly nanostructures are a unique class of nanomaterials because of their interesting properties such as hierarchical structures, luminescence, and large nonlinear optical efficiency. Herein, we synthesized biomolecule cysteine (Cys) and glutathione (GSH) capped sub-100 nm self-assembly nanoparticles (Cu-Cys-GSH NPs) with red fluorescence. The as-synthesized NPs show high emission enhancement in the presence of ethanol, caused by the aggregation-induced emission. We correlated the structure and optical properties of Cu-Cys-GSH NPs by measuring the mass, morphology, and surface charge as well as their two-photon excited fluorescence cross-section (σ2PEPL), two-photon absorption cross-section (σTPA) and first hyperpolarizability (β) of Cu-Cys-GSH NPs in water and water-ethanol using near-infrared wavelength. We found a high β value as (77 ± 10) × 10-28 esu (in water) compared to the reference medium water. The estimated values of σ2PEPL and σTPA are found to be (13 ± 2) GM and (1.4 ± 0.2) × 104 GM, respectively. We hope our investigations of linear and nonlinear optical properties of copper-thiolate self-assemblies in water and its solvent-induced aggregates will open up new possibilities in designing self-assembled systems for many applications including sensing, drug delivery, and catalysis.
Collapse
Affiliation(s)
- Dipankar Bain
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Isabelle Russier-Antoine
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Hao Yuan
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Sarita Kolay
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sylvain Maclot
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Christophe Moulin
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Estelle Salmon
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Pierre-François Brevet
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| | - Anna Pniakowska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław 50-370, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław 50-370, Poland
| | - Rodolphe Antoine
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon F-69622, France
| |
Collapse
|
24
|
Nonappa. Precision nanoengineering for functional self-assemblies across length scales. Chem Commun (Camb) 2023; 59:13800-13819. [PMID: 37902292 DOI: 10.1039/d3cc02205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, i.e., from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated via the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.
Collapse
Affiliation(s)
- Nonappa
- Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.
| |
Collapse
|
25
|
Li S, Yang N, Ma Q, Li S, Tong S, Luo J, Song X, Yang H. Tailoring Oxidation Responsiveness of Gold Nanoclusters via Ligand Engineering for Imaging Acute Kidney Injury. Anal Chem 2023; 95:16153-16159. [PMID: 37877516 DOI: 10.1021/acs.analchem.3c02698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Gold nanoclusters (AuNCs) have shown great promise for in vivo imaging because of their definable structure, tunable photoluminescence (PL), and desired renal clearance. However, current understanding of the responsiveness of AuNCs to biological substances is still limited, which may hamper their biomedical applications. Herein, we explore the oxidation responsiveness of near-infrared II (NIR-II) luminescent AuNCs capped with two different ligands, which can be optimized for high-efficiency NIR-II PL imaging of mice acute kidney injury (AKI) featuring high-level peroxynitrite anions (ONOO-). We found that in the presence of ONOO-, N-acetylcysteine-capped AuNCs (NAC-AuNCs) tended to be oxidized more easily than that capped with the macromolecular mercapto-β-cyclodextrin (CDS-AuNCs), resulting in the aggregation of NAC-AuNCs into large-sized assemblies, which was not observed in CDS-AuNCs. The oxidation-triggered morphology, composition, and NIR-II PL changes in NAC-AuNCs were then systematically studied. We finally demonstrated that NAC-AuNCs can be implemented for sensitive NIR-II PL imaging of mice AKI, facilitated by the synergetic in situ AuNC aggregation and decreased glomerular filtration rate (GFR) in the injured kidney, which outperforms the methods solely based on the decreased GFR effect. Therefore, this work highlights the critical significance of ligand engineering in AuNCs and may motivate future design of AuNCs for diverse bioimaging applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Nangen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuping Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shijie Li
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jiewei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
26
|
Sevilla RC, Soebroto RJ, Kurniawan IS, Chen PW, Chang SH, Shen JL, Chou WC, Yeh JM, Huang HY, Yuan CT. Self-Trapped, Thermally Equilibrated Delayed Fluorescence Enables Low-Reabsorption Luminescent Solar Concentrators Based on Gold-Doped Silver Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922121 DOI: 10.1021/acsami.3c13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Reabsorption-free luminescent solar concentrators (LSCs) are crucial ingredients for photovoltaic windows. Atomically precise metal nanoclusters (NCs) with large Stokes-shifted photoluminescence (PL) hold great promise for applications in LSCs. However, a fundamental understanding of the PL mechanism, particularly on the excited-state interaction and exciton kinetics, is still lacking. Herein, we studied the exciton-phonon coupling and singlet/triplet exciton dynamics for gold-doped silver NCs in a solid matrix. Following photoexcitation, the excitons can be self-trapped via strong exciton-phonon coupling. Subsequently, rapid thermal equilibration between the singlet and triplet states occurs due to the coexistence of small energy splitting and spin-orbit coupling. Finally, broadband delayed fluorescence with a large Stokes shift can be generated, namely, self-trapped, thermally equilibrated delayed fluorescence (ST-TEDF). Benefiting from superior ST-TEDF, we demonstrated efficient LSCs with minimized reabsorption.
Collapse
Affiliation(s)
- Russel Cruz Sevilla
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ruth Jeane Soebroto
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Irwan Saleh Kurniawan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Po-Wen Chen
- Physics Division, National Atomic Research Institute, Taoyuan 325207, Taiwan
| | - Sheng Hsiung Chang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ji-Lin Shen
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Hsiu-Ying Huang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
27
|
Shen J, Fan Z. Construction of nanohybrid Tb@CDs/GSH-CuNCs as a ratiometric probe to detect phosphate anion based on aggregation-induced emission and FRET mechanism. Mikrochim Acta 2023; 190:427. [PMID: 37792071 DOI: 10.1007/s00604-023-06005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
The simple preparation of a nanohybrid of terbium-doped carbon dots/glutathione-capped copper nanoclusters (Tb@CDs/GSH-CuNCs) was for the first time developed for ratiometric detection of phosphate anion (Pi). Blue-emission of Tb@CDs can trigger non-luminescence of GSH-CuNCs for aggregation-induced emission (AIE) performance due to the strong reserved coordination capacity of Tb3+. Thus, Tb@CDs/GSH-CuNCs rapidly generated dual-emission signals at 630 nm and 545 nm by directly mixing the two individual materials via the AIE effect, alongside fluorescence resonance energy transfer (FRET) process. However, by the introduction of Pi, both AIE and FRET processes were blocked because of the stronger binding affinity of Tb3+ and Pi than that of Tb3+ and -COOH on Tb@CDs, thus realizing successful ratiometric detection of Pi. The linear concentration range was 0-16 μM, with the limit of detection (LOD) of 0.32 μM. The proposed method provided new ideas for designing nanohybrid of CDs and nanoclusters (MNCs) as ratiometric fluorescent probes for analytical applications.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030000, Shanxi Province, People's Republic of China
- Department of Chemistry, Changzhi University, 73 Baoningmen East Street, Changzhi, 046011, Shanxi Province, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030000, Shanxi Province, People's Republic of China.
| |
Collapse
|
28
|
Bera D, Mukhopadhyay A, Nonappa, Goswami N. In Situ Depletion-Guided Engineering of Nanoshell-like Gold Nanocluster Assemblies with Enhanced Peroxidase-like Nanozyme Activity. J Phys Chem Lett 2023; 14:7299-7305. [PMID: 37561008 DOI: 10.1021/acs.jpclett.3c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Functional superstructures constructed from metal nanoclusters (MNCs) hold great promise in providing highly tunable photoluminescence (PL), catalytic activity, photothermal stability, and biological functionality. However, their controlled synthesis with well-defined size, structure, and properties remains a significant challenge. Herein, we introduce a novel approach that combines depletion attraction and thermal activation to induce the in situ formation of spherical superclusters (AuSCs) from Au(I)-thiolate complexes within the assembly. Extensive characterization and electron tomographic reconstruction reveal that Au(I)-thiolate complexes can be sequentially transitioned into metallic Au0, resulting in hollow nanoshell-like structures with consistent size (∼110 nm) and diverse shell configurations. Our results demonstrate that AuSCs with thinner shells, containing a high concentration of Au(I)-thiolate complexes, exhibit the highest PL, while AuSCs with thicker shells, containing high concentrations of metallic gold atoms and low ligand density, show remarkable peroxidase-like nanozyme activity in the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation reaction.
Collapse
Affiliation(s)
- Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Arun Mukhopadhyay
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu-3, FI-33720 Tampere, Finland
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
29
|
Xin J, Xu J, Zhu C, Tian Y, Zhang Q, Kang X, Zhu M. Restriction of intramolecular rotation for functionalizing metal nanoclusters. Chem Sci 2023; 14:8474-8482. [PMID: 37592984 PMCID: PMC10430645 DOI: 10.1039/d3sc01698f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The restriction of intramolecular rotation has been extensively exploited to trigger the property enhancement of nanocluster-based materials. However, such a restriction is induced mainly by intermolecular aggregation. The direct restriction of intramolecular rotation of metal nanoclusters, which could boost their properties at the single molecular level, remains rarely explored. Here, ligand engineering was applied to activate intramolecular interactions at the interface between peripheral ligands and metallic kernels of metal nanoclusters. For the newly reported Au4Ag13(SPhCl2)9(DPPM)3 nanocluster, the molecule-level interactions between the Cl terminals on thiol ligands and the Ag atoms on the cluster kernel remarkably restricted the intramolecular rotation, endowing this robust nanocluster with superior thermal stability, emission intensity, and non-linear optical properties over its cluster analogue. This work presents a novel case of the restriction of intramolecular rotation (i.e., intramolecular interaction-induced property enhancement) for functionalizing metal clusters at the single molecular level.
Collapse
Affiliation(s)
- Junsheng Xin
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Jing Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Chen Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Yupeng Tian
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Qiong Zhang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
30
|
Halawa MI, Saqib M, Lei W, Su L, Zhang X. Zirconium-Directed Supramolecular Self-Assembly of Coenzyme A@GNCs with Enhanced Phosphorescence for Developing Ultrasensitive Tracer Probe of Dipicolinic Acid, a Biomarker of Bacterial Spores. Anal Chem 2023; 95:11164-11171. [PMID: 37437237 DOI: 10.1021/acs.analchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Luminescent gold nanoclusters (GNCs) are a class of attractive quantum-sized nanomaterials bridging the gap between organogold complexes and gold nanocrystals. They typically have a core-shell structure consisting of a Au(I)-organoligand shell-encapsulated few-atom Au(0) core. Their luminescent properties are greatly affected by their Au(I)-organoligand shell, which also supports the aggregation-induced emission (AIE) effect. However, so far, the luminescent Au nanoclusters encapsulated with the organoligands containing phosphoryl moiety have rarely been reported, not to mention their AIE. In this study, coenzyme A (CoA), an adenosine diphosphate (ADP) analogue that is composed of a bulky 5-phosphoribonucleotide adenosine moiety connected to a long branch of vitamin B5 (pantetheine) via a diphosphate ester linkage and ubiquitous in all living organisms, has been used to synthesize phosphorescent GNCs for the first time. Interestingly, the synthesized phosphorescent CoA@GNCs could be further induced to generate AIE via the PO32- and Zr4+ interactions, and the observed AIE was found to be highly specific to Zr4+ ions. In addition, the enhanced phosphorescent emission could be quickly turned down by dipicolinic acid (DPA), a universal and specific component and also a biomarker of bacterial spores. Therefore, a Zr4+-CoA@GNCs-based DPA biosensor for quick, facile, and highly sensitive detection of possible spore contamination has been developed, showing a linear concentration range from 0.5 to 20 μM with a limit of detection of 10 nM. This study has demonstrated a promising future for various organic molecules containing phosphoryl moiety for the preparation of AIE-active metal nanoclusters.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Muhammad Saqib
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Weihao Lei
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Pyo K, Matus MF, Hulkko E, Myllyperkiö P, Malola S, Kumpulainen T, Häkkinen H, Pettersson M. Atomistic View of the Energy Transfer in a Fluorophore-Functionalized Gold Nanocluster. J Am Chem Soc 2023. [PMID: 37377151 DOI: 10.1021/jacs.3c02292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π-π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - María Francisca Matus
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Eero Hulkko
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
- Nanoscience Center, Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Pasi Myllyperkiö
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Sami Malola
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Tatu Kumpulainen
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Hannu Häkkinen
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
- Nanoscience Center, Department of Physics, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, P.O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| |
Collapse
|
32
|
Huang RW, Song X, Chen S, Yin J, Maity P, Wang J, Shao B, Zhu H, Dong C, Yuan P, Ahmad T, Mohammed OF, Bakr OM. Radioluminescent Cu-Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging. J Am Chem Soc 2023. [PMID: 37335564 DOI: 10.1021/jacs.3c02612] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Zero-dimensional (0D) scintillation materials have drawn tremendous attention due to their inherent advantages in the fabrication of flexible high-energy radiation scintillation screens by solution processes. Although considerable progress has been made in the development of 0D scintillators, such as the current leading lead-halide perovskite nanocrystals and quantum dots, challenges still persist, including potential issues with self-absorption, air stability, and eco-friendliness. Here, we present a strategy to overcome those limitations by synthesis and self-assembly of a new class of scintillators based on metal nanoclusters. We demonstrate the gram-scale synthesis of an atomically precise nanocluster with a Cu-Au alloy core exhibiting high phosphorescence quantum yield, aggregation-induced emission enhancement (AIEE) behavior, and intense radioluminescence. By controlling solvent interactions, the AIEE-active nanoclusters were self-assembled into submicron spherical superparticles in solution, which we exploited as a novel building block for flexible particle-deposited scintillation films with high-resolution X-ray imaging performance. This work reveals metal nanoclusters and their self-assembled superstructures as a promising class of scintillators for practical applications in high-energy radiation detection and imaging.
Collapse
Affiliation(s)
- Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, College of Chemistry, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Song
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Shulin Chen
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Ploytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Partha Maity
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiayi Wang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bingyao Shao
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hongwei Zhu
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Taimoor Ahmad
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Controlled-fabrication and assembly-induced emission enhancement (AIEE) of near-infrared emitted gold nanoclusters capped by thiolactic acid. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
34
|
Zuo Z, Pan X, Yang G, Zhang Y, Liu X, Zha J, Yuan X. Cu(I) complexes with aggregation-induced emission for enhanced photodynamic antibacterial application. Dalton Trans 2023; 52:2942-2947. [PMID: 36847279 DOI: 10.1039/d3dt00333g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This communication reports the design of aggregation-induced emission (AIE)-featured PEG-condensed Cu(I)-p-MBA aggregates (PCuA). Benefiting from the AIE trait and intrinsic antibacterial property of Cu species, the as-developed PCuA exhibits enhanced photodynamic antibacterial activities against broad-spectrum bacteria, providing a paradigm in the design of novel antibacterial agents.
Collapse
Affiliation(s)
- Zhongxiang Zuo
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xinxin Pan
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Yuemin Zhang
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xingwen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Jinrun Zha
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| |
Collapse
|
35
|
Bera N, Kiran Nandi P, Hazra R, Sarkar N. Aggregation induced emission of surface ligand controlled gold nanoclusters employing imidazolium surface active ionic liquid and pH sensitivity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Bera D, Baruah M, Dehury AK, Samanta A, Chaudhary YS, Goswami N. Depletion Driven Assembly of Ultrasmall Metal Nanoclusters: From Kinetically Arrested Assemblies to Thermodynamically Stable, Spherical Superclusters. J Phys Chem Lett 2022; 13:9411-9421. [PMID: 36191241 DOI: 10.1021/acs.jpclett.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoscale assembly of ultrasmall metal nanoclusters (MNCs) by means of molecular forces has proven to be a powerful strategy to engineer their molecule-like properties in multiscale dimensions. By leveraging depletion attraction as the guiding force, herein, we demonstrate the formation of kinetically trapped NCs assemblies with enhanced photoluminescence (PL) and excited state lifetimes and extend the principle to cluster impregnated cationic nanogels, nonluminescent Au(I)-thiolate complexes, and weakly luminescent CuNCs. We further demonstrate a thermal energy driven kinetic barrier breaking process to isolate these assemblies. These isolated assemblies are thermodynamically stable, built from a strong network among several discrete, ultrasmall AuNCs and exhibit several unusual properties such as high stability in various pH, strong PL, microsecond lifetimes, large Stocks shifts, and higher accumulation in the lysosome of cancer cells. We anticipate our strategy may find wider use in creating a large variety of MNC-based assemblies with many unforeseen arrangements, properties, and applications.
Collapse
Affiliation(s)
- Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Mousumi Baruah
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asish K Dehury
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
38
|
Zhou S, Peng B, Duan Y, Liu K, Ikkala O, Ras RHA. Bright and Photostable Fluorescent Metal Nanocluster Supraparticles from Invert Emulsions. Angew Chem Int Ed Engl 2022; 61:e202210808. [PMID: 36045283 PMCID: PMC9804586 DOI: 10.1002/anie.202210808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Fluorescent supraparticles of gold, silver and copper nanoclusters are synthesized by simply drying of invert emulsions, resulting in a dozen-fold increase in photoluminescence quantum yield (up to ≈80 %) and a significant improvement in photostability. The inhibition of the ligand twisting during the intramolecular charge transfer is found to be responsible for the enhancement, especially for the gold nanocluster supraparticles. This research provides a general, flexible, and easy method for producing highly luminescent and photostable metal nanocluster-based materials that promise practical applications in white-light-emitting diodes.
Collapse
Affiliation(s)
- Shaochen Zhou
- Department of Applied PhysicsSchool of ScienceAalto University00076EspooFinland
| | - Bo Peng
- Department of Applied PhysicsSchool of ScienceAalto University00076EspooFinland
| | - Yanyan Duan
- IMDEA Materials InstituteCalle Eric Kandel 228906GetafeSpain
| | - Kai Liu
- Department of Applied PhysicsSchool of ScienceAalto University00076EspooFinland
| | - Olli Ikkala
- Department of Applied PhysicsSchool of ScienceAalto University00076EspooFinland,Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto University00076EspooFinland
| | - Robin H. A. Ras
- Department of Applied PhysicsSchool of ScienceAalto University00076EspooFinland,Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto University00076EspooFinland
| |
Collapse
|
39
|
Bright and Photostable Fluorescent Metal Nanocluster Supraparticles from Invert Emulsions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Lin X, Li W, Wen Y, Su L, Zhang X. Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials 2022; 287:121603. [PMID: 35688028 DOI: 10.1016/j.biomaterials.2022.121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
As a non-invasive visualization technique, photoluminescence imaging (PLI) has found its huge value in many biological applications associated with intracellular process monitoring and early and accurate diagnosis of diseases. PLI can also be combined with therapeutics to build imaging-guided theragnostic platforms for achieving early and precise treatment of diseases. Photodynamic therapy (PDT) as a quintessential phototheranostics technology has gained great benefits from the combination with PLI. Recently, aggregation-induced emission (AIE)-active materials have emerged as one of the most promising bioimaging and phototheranostic agents. Most of AIEgens, however, need to be chemically engineered to form versatile nanocomposites with improved their photophysical property, photochemical activity, biocompatibility, etc. In this review, we focus on three categories of AIE-active nanocomposites and highlight their application progresses in the intracellular biological process monitoring and PLI-guided PDT. We hope this review can guide further development of AIE-active nanocomposites and promote their practical applications for monitoring intracellular biological processes and imaging-guided PDT.
Collapse
Affiliation(s)
- Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wei Li
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| |
Collapse
|
41
|
Xu J, Zhou H, Zhang Y, Zhao Y, Yuan H, He X, Wu Y, Zhang S. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128158. [PMID: 35016123 DOI: 10.1016/j.jhazmat.2021.128158] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the prevention and control of water pollution has received extensive attention. There is a need to develop simple and effective strategies for the rapid detection of metal ions and dissolved organic matter (DOM) in order to improve water quality. To this end, the first copper nanoclusters (CuNCs)-based fluorescent sensor array was done to identify 12 metal ions (Pb2+, Fe3+, Cu2+, Cd2+, Cr3+, Co2+, Ni2+, Zn2+, Ag+, Fe2+, Hg2+, and Al3+) and DOM (humic substances, lipids, fatty acids, amino acids, and lignans). The results revealed that CuNCs that were synthesized with polyethyleneimine (PEI), histidine (His), and glutathione (GSH) exhibited different binding abilities to metal ions and DOM. These unique fluorescence responses were analyzed using principal component analysis (PCA) and linear discriminant analysis (LDA) to identify metal ions and DOM in the buffer. The aforementioned 12 metal ions were classified at a limit concentration of 1.5 μM. Moreover, quantification of metal ions was achieved even at a low concentration of 0.83 μM (Zn2+). This array also worked well in the recognition of metal ions in tap water as well as distinguishing riverine and seawater samples of different regions, which was of great significance in environmental monitoring.
Collapse
Affiliation(s)
- Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Yixue Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Hao Yuan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai 200062, China.
| |
Collapse
|
42
|
Mondal K, Pramanik A, Mondal T, Panja SS, Sarkar R, Kumbhakar P. Self-Assembly of Solvent-Stabilized Au Nanocluster as Efficient Förster Resonance Energy-Transfer Initiator for White Light Generation. J Phys Chem Lett 2022; 13:3079-3088. [PMID: 35353525 DOI: 10.1021/acs.jpclett.1c04228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aggregation-induced enhancement (AIE) in the photoluminescence quantum yield (PLQY) from 12.5 to 51% in the N,N-dimethylformamide (DMF)-stabilized Au nanocluster (AuNC) system is reported here. The self-assembling of AuNC has been achieved via hydrogen bonding interaction, which is further utilized in designing the AuNC_DCM system for realizing a Förster resonance energy transfer (FRET)-based white LED (WLED), having CIE coordinates of (0.35, 0.29). The solution-processed fabrication strategy used, has given us the liberty to optimize its components for optimal full-spectrum light output. The CIE coordinates of the designed WLED have been improved further to (0.33, 0.32), with a high color rendering index of 93 and correlated color temperature of 5620 K by incorporating a green emitter, namely nitrogen-doped graphene quantum dots (NGQD), in the AuNC_DCM system. The excellent spectral quality of the as-designed WLED and the repeatability of the proposed fabrication method will make the developed AuNCs_DCM FRET conjugate useful in practical photonic applications.
Collapse
Affiliation(s)
- Koushik Mondal
- Nanoscience Laboratory, Dept. of Physics, National Institute of Technology Durgapur, 713209 West Bengal, India
| | - Ashim Pramanik
- Nanoscience Laboratory, Dept. of Physics, National Institute of Technology Durgapur, 713209 West Bengal, India
| | - Tapashree Mondal
- Dept. of Chemistry, National Institute of Technology Durgapur, 713209 West Bengal, India
| | - Sujit Sankar Panja
- Dept. of Chemistry, National Institute of Technology Durgapur, 713209 West Bengal, India
| | - Rajat Sarkar
- Nanoscience Laboratory, Dept. of Physics, National Institute of Technology Durgapur, 713209 West Bengal, India
| | - Pathik Kumbhakar
- Nanoscience Laboratory, Dept. of Physics, National Institute of Technology Durgapur, 713209 West Bengal, India
| |
Collapse
|
43
|
Kolay S, Bain D, Maity S, Devi A, Patra A, Antoine R. Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:544. [PMID: 35159891 PMCID: PMC8838213 DOI: 10.3390/nano12030544] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Studies on self-assembly of metal nanoclusters (MNCs) are an emerging field of research owing to their significant optical properties and potential applications in many areas. Fabricating the desired self-assembly structure for specific implementation has always been challenging in nanotechnology. The building blocks organize themselves into a hierarchical structure with a high order of directional control in the self-assembly process. An overview of the recent achievements in the self-assembly chemistry of MNCs is summarized in this review article. Here, we investigate the underlying mechanism for the self-assembly structures, and analysis reveals that van der Waals forces, electrostatic interaction, metallophilic interaction, and amphiphilicity are the crucial parameters. In addition, we discuss the principles of template-mediated interaction and the effect of external stimuli on assembly formation in detail. We also focus on the structural correlation of the assemblies with their photophysical properties. A deep perception of the self-assembly mechanism and the degree of interactions on the excited state dynamics is provided for the future synthesis of customizable MNCs with promising applications.
Collapse
Affiliation(s)
- Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Dipankar Bain
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Aarti Devi
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|
44
|
van de Looij S, Hebels ER, Viola M, Hembury M, Oliveira S, Vermonden T. Gold Nanoclusters: Imaging, Therapy, and Theranostic Roles in Biomedical Applications. Bioconjug Chem 2022; 33:4-23. [PMID: 34894666 PMCID: PMC8778645 DOI: 10.1021/acs.bioconjchem.1c00475] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Indexed: 12/11/2022]
Abstract
For the past two decades, atomic gold nanoclusters (AuNCs, ultrasmall clusters of several to 100 gold atoms, having a total diameter of <2 nm) have emerged as promising agents in the diagnosis and treatment of cancer. Owing to their small size, significant quantization occurs to their conduction band, which leads to emergent photonic properties and the disappearance of the plasmonic responses observed in larger gold nanoparticles. For example, AuNCs exhibit native luminescent properties, which have been well-explored in the literature. Using proteins, peptides, or other biomolecules as structural scaffolds or capping ligands, required for the stabilization of AuNCs, improves their biocompatibility, while retaining their distinct optical properties. This paved the way for the use of AuNCs in fluorescent bioimaging, which later developed into multimodal imaging combined with computer tomography and magnetic resonance imaging as examples. The development of AuNC-based systems for diagnostic applications in cancer treatment was then made possible by employing active or passive tumor targeting strategies. Finally, the potential therapeutic applications of AuNCs are extensive, having been used as light-activated and radiotherapy agents, as well as nanocarriers for chemotherapeutic drugs, which can be bound to the capping ligand or directly to the AuNCs via different mechanisms. In this review, we present an overview of the diverse biomedical applications of AuNCs in terms of cancer imaging, therapy, and combinations thereof, as well as highlighting some additional applications relevant to biomedical research.
Collapse
Affiliation(s)
- Sanne
M. van de Looij
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Erik R. Hebels
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Martina Viola
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Mathew Hembury
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Sabrina Oliveira
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
- Department
of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of
Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
45
|
Halawa MI, Wu G, Salem AEA, Su L, Li BS, Zhang X. In situ synthesis of chiral AuNCs with aggregation-induced emission using glutathione and ceria precursor nanosheets for glutathione biosensing. Analyst 2022; 147:4525-4535. [DOI: 10.1039/d2an00939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au(i)–SG/Ce(CO3)2 NS conjugated nanoprobe was developed for selective GSH detection. The redox reaction between GSH and the NS could release Ce3+ ions to initiate the intense AIE of Au(i)–SG oligomers.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- College of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Guoxing Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Alaa Eldin A. Salem
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lei Su
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Bing Shi Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- College of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
46
|
Chakraborty S, Mukherjee S. Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chem Commun (Camb) 2021; 58:29-47. [PMID: 34877943 DOI: 10.1039/d1cc05396e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminescent metal nanoclusters (NCs) have been established as next-generation fluorophores. Their biocompatible and non-toxic nature, along with excellent chemical- and photo-stability, enables them to find applications in multi-disciplinary areas. However, preparing NCs which are stable is always challenging, primarily owing to their small size and propensity to self-aggregate. In this review, we highlight a holistic approach as to how ligands and templates can monitor the stability of NCs, tune their spectroscopic signatures, and alter their applications. The role of small molecules of a large ligand in the preparation of NCs and their associated limitations are also discussed. We have summarized how these NCs can be utilized in sensing several metal ions, pH, viscosity and temperature of many systems which have biological relevance. Additionally, these luminescent metal NCs find usage in cell-imaging, discriminating between cancerous and non-cancerous cell lines and also targeting specific organelles within the cellular environment.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
47
|
Peng Y, Huang X, Wang F. Near-infrared emitting gold-silver nanoclusters with large Stokes shifts for two-photon in vivo imaging. Chem Commun (Camb) 2021; 57:13012-13015. [PMID: 34806718 DOI: 10.1039/d1cc04445a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared emitting bi-metallic gold/silver nanoclusters with large Stokes shifts were manufactured through one-pot synthesis. The gold/silver nanoclusters exhibit strong NIR fluorescence due to the silver effect, which can be applied as a two-photon fluorescent contrast agent for in vivo bioimaging.
Collapse
Affiliation(s)
- Yaowei Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
48
|
Jin Y, Peng QC, Li S, Su HF, Luo P, Yang M, Zhang X, Li K, Zang SQ, Tang BZ, Mak TCW. Aggregation-induced barrier to oxygen (AIBO)—A new AIE mechanism for metal cluster with phosphorescence. Natl Sci Rev 2021; 9:nwab216. [PMID: 36110901 PMCID: PMC9469893 DOI: 10.1093/nsr/nwab216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Metal clusters are useful phosphors, but highly luminescent examples are quite rare. Usually, the phosphorescence of metal clusters is hindered by ambient O2 molecules. Transforming this disadvantage into an advantage for meaningful applications of metal clusters presents a formidable challenge. In this work, we used ligand engineering to judiciously prepare colour-tuneable and brightly emitting Cu(I) clusters that are ultrasensitive to O2 upon dispersion in a fluid solution or in a solid matrix. When the O2 scavenger dimethyl sulfoxide (DMSO) was used as the solvent, joint photo- and oxygen-controlled multicolour switches were achieved for the first time for metal cluster-based photopatterning and photo-anticounterfeiting. More importantly, an aggregation-induced barrier to oxygen, a new aggregation-induced emission mechanism for metal clusters, was proposed, providing a new pathway to realizing the intense emission of metal clusters in the aggregated state. These results are expected to promote the application of metal clusters and enrich the luminescence theory of metal cluster aggregates.
Collapse
Affiliation(s)
- Yan Jin
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Chen Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hui-Fang Su
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ming Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
49
|
Das AK, Biswas S, Manna SS, Pathak B, Mandal S. Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorg Chem 2021; 60:18234-18241. [PMID: 34747176 DOI: 10.1021/acs.inorgchem.1c02867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unraveling the total structure of the atom-precise silver cluster-assembled materials (CAMs) is extremely significant to elucidating the structure-property correlation, but it is a very challenging task. Herein, a new silver CAM is synthesized by a facile synthetic pathway with a unique distorted elongated square-bipyramid-based Ag11 core geometry. The core is protected by two different kinds of the surface protecting ligands (adamantanethiolate and trifluoroacetate) and connected through a bidentate organic linker. The crystallographic data show that this material embraces a one-dimensional periodic structure that orchestrates by various noncovalent interactions to build a thermally stable supramolecular assembly. Further characterization confirms its n-type semiconducting property with an optical band gap of 1.98 eV. The impact of an adamantanethiol-protected silver core on the optical properties of this type of periodic framework is analyzed by the UV-vis absorbance and emission phenomena. Theoretical calculations predicted that the occupied states are majorly contributed by Ag-S. Solvent-dependent photoluminescence studies proved that a polar solvent can significantly perturb the metal thiolate and thiolate-centered frontier molecular orbitals that are involved in the electronic transitions.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 69551, India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 69551, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | | |
Collapse
|