1
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
Wang J, Xing J, Wang Y, Zhang X, Zhang S. First-principles study of electrochemical H 2O 2 production on Pd-B 40 single-atom catalyst. J Mol Graph Model 2024; 132:108847. [PMID: 39163731 DOI: 10.1016/j.jmgm.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Hydrogen peroxide (H2O2), a versatile green compound, is increasingly in demand. The electrochemical two-electron oxygen reduction reaction (2e- ORR) is a simple and environmentally friendly substitute method to the traditional anthraquinone oxidation method for H2O2 production. This study systematically investigates the 2e- ORR process on single transition metal atom-loaded boron fullerene (M - B40) using density functional theory calculations. In evaluating the stability of the catalysts, we found that Au, Pd, Pt, Rh, and Ir atoms adsorbed on hexagonal or heptagonal sites of B40 exhibit good stability. Among these, Pd-modified B40 heptagonal cavity (Pd-B40-heptagonal) demonstrates an ideal Gibbs free energy change for OOH* (4.49 eV) and efficiently catalyzes H2O2 production at a low overpotential (0.27 V). Electronic structure analysis reveals that electron transfer between Pd-B40-heptagonal and adsorbed O2 facilitates O2 activation. Additionally, the high 2e- ORR activity of Pd-B40-heptagonal is attributed to electron transfer from the Pd-d orbitals to the π* anti-bonding of p orbitals of OOH*, moderately activating the O-O bond. This study offers valuable understanding designing high-performance electrocatalysts for 2e- ORR.
Collapse
Affiliation(s)
- Junkai Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China.
| | - Jingyi Xing
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China
| | - Yifei Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China
| | - Xin Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Ex4 4QF, UK.
| |
Collapse
|
3
|
Bari GAKMR, Jeong JH. Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels 2024; 10:63. [PMID: 38247786 PMCID: PMC10815738 DOI: 10.3390/gels10010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Continuous worldwide demands for more clean energy urge researchers and engineers to seek various energy applications, including electrocatalytic processes. Traditional energy-active materials, when combined with conducting materials and non-active polymeric materials, inadvertently leading to reduced interaction between their active and conducting components. This results in a drop in active catalytic sites, sluggish kinetics, and compromised mass and electronic transport properties. Furthermore, interaction between these materials could increase degradation products, impeding the efficiency of the catalytic process. Gels appears to be promising candidates to solve these challenges due to their larger specific surface area, three-dimensional hierarchical accommodative porous frameworks for active particles, self-catalytic properties, tunable electronic and electrochemical properties, as well as their inherent stability and cost-effectiveness. This review delves into the strategic design of catalytic gel materials, focusing on their potential in advanced energy conversion and storage technologies. Specific attention is given to catalytic gel material design strategies, exploring fundamental catalytic approaches for energy conversion processes such as the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and more. This comprehensive review not only addresses current developments but also outlines future research strategies and challenges in the field. Moreover, it provides guidance on overcoming these challenges, ensuring a holistic understanding of catalytic gel materials and their role in advancing energy conversion and storage technologies.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Ma Z, Duan Y, Liu Y, Han Y, Wang X, Sun G, Li Y. Synergistic effects of hierarchical porous structures and ultra-high pyridine nitrogen doping enhance the oxygen reduction reaction electrocatalytic performance of metal-free laminated lignin-based carbon. Int J Biol Macromol 2024; 256:128292. [PMID: 37995779 DOI: 10.1016/j.ijbiomac.2023.128292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Construction of non-metallic biomass-carbon based catalysts for fuel cell air cathode applications has attracted great attention in recent years. In this work, a convenient and clean technique was developed to fabrication nitrogen-doped lignin-based hierarchical porous lamellar carbon (N-LHPC) via lignin as the carbon precursor, melamine/urea as the nitrogen source and ZnC2O4.2H2O as the chemical activator. The N-LHPC has a high specific surface area (491.5 m2 g-1) and macroporous/mesoporous/microporous structures. The nitrogen doping of N-LHPC can reach 16.37 wt%, with a high pyridinic nitrogen content of 41.39 at.%. N-LHPC exhibits a high half-wave potential (0.87 V) and a large limiting current density (5.75 mA cm-2) in 0.1 mol KOH media which is comparable to the commercial Pt/C catalysts. Furthermore, N-LHPC was assembled as air cathode catalyst for Zn-air batteries to evaluate its practical catalytic performance, and the power density was as high as 191 mW cm-2, which was superior to the 20 wt% Pt/C electrocatalyst. This research demonstrates that lignin is a promising carbon source for the fabrication of high catalytic activity and economical electrocatalysts for energy storage systems.
Collapse
Affiliation(s)
- Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yukai Duan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
6
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
7
|
Muuli K, Lyu X, Mooste M, Käärik M, Zulevi B, Leis J, Yu H, Cullen DA, Serov A, Tammeveski K. Outstanding Platinum Group Metal-free Bifunctional Catalysts for Rechargeable Zinc-Air Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
8
|
Zhang X, Su K, Chen X, Li J, Wang B, Luo Z, Qian D, Li J, Liu J. A Hybrid of the Fe 4N-Fe Heterojunction Supported on N-Doped Carbon Nanobelts and Ketjen Black Carbon as a Robust High-Performance Electrocatalyst. J Phys Chem Lett 2022; 13:11118-11127. [PMID: 36441953 DOI: 10.1021/acs.jpclett.2c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, an extremely simple l-alanine-assisted pyrolysis method was proposed for the construction of a novel hierarchically porous hybrid of Fe4N-Fe supported on N-doped carbon nanobelts and Ketjen black carbon (denoted as Fe4N-Fe@N-C/N-KB). It has been found that the participation of l-alanine in pyrolysis can dramatically increase the total pyridinic-N/graphitic-N content in Fe4N-Fe@N-C/N-KB, which is peculiarly conducive to the enhancement of ORR performance. The in-site formation of the Fe4N-Fe heterojunction via the thermal reduction and decomposition of Fe3N as well as the introduction of cheap KB can significantly improve the ORR performance. As a result, the activity, durability, and methanol tolerance of this hybrid are comprehensively better than those of commercial 20 wt % Pt/C, promising future applications in practical devices. Density functional theory calculations disclose that the highly improved ORR activity of Fe4N-Fe@N-C/N-KB also benefits from the favorable electron penetration and excellent electronic conductivity between the Fe4N nanoparticles and the N-incorporated carbon frameworks.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kanda Su
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bowen Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Tong X, Zhan X, Gao Z, Zhang G, Xie Y, Tian J, Ranganathan H, Li D, Claverie JP, Sun S. Effect of the metal-support interaction in platinum anchoring on heteroatom-doped graphene for enhanced oxygen reduction reaction. Chem Commun (Camb) 2022; 58:11519-11522. [PMID: 36149362 DOI: 10.1039/d2cc03505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three kinds of Pt anchoring on heteroatom-doped graphene were synthesised and their effects on catalytic performance were discussed. The introduction of N and P into graphene is helpful to decrease the Pt particle size with a homogeneous distribution and favor the electronic configuration for the ORR.
Collapse
Affiliation(s)
- Xin Tong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, 55000, China.,Institut National de la Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, 55000, China
| | - Zijian Gao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, 55000, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Yadian Xie
- Key Laboratory of Low-Dimensional Materials and Big data, Guizhou Minzu University, Guiyang 550025, China
| | - Juan Tian
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, 55000, China
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jerome P Claverie
- Department of Chemistry, Université de Sherbrooke, QC, J1K 2R1, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
10
|
Liu L, Liao Y, Yue S, Wu C, Chen Y, Xie H, Wang Y. Hierarchal Porous Graphene-Structured Electrocatalysts with Fe-N 5 Active Sites Modified with Fe Clusters for Enhanced Performance Toward Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42038-42047. [PMID: 36074013 DOI: 10.1021/acsami.2c10947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The local coordination environment around the active centers has a major impact on tuning the intrinsic activity of M-N-C catalysts. Herein, a porous graphene with Fe-N5 active sites modified with Fe clusters is successfully fabricated by using Fe3+-SCN- and NaHCO3 as the metal precursor and pore-forming agent, respectively. The unique Fe-N5 configuration accompanying Fe clusters and the improved ORR activity are confirmed by various characterization techniques and theoretical calculations. Benefiting from the pores, mass and electron transfer channels are successfully constructed, making more active sites accessible and facilitating the ORR process. As a consequence, the as-prepared catalyst has an excellent ORR activity with a half-wave potential of 0.89 V, comparable selectivity, and superior stability. In addition, a homemade primary zinc-air battery using this material as the cathode catalyst has a maximum power density of 0.205 W/cm2, revealing the potential of the as-constructed CSA-Fe-N-C catalyst to replace precious Pt catalysts.
Collapse
Affiliation(s)
- Liqiu Liu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P.R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Sizhe Yue
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P.R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P.R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
11
|
Deng L, Li X, Zhang G, Luo Q, Yang L, Jiang J. Utilizing High Coordination Diversity in Carbon Nanocone Supported Catalytic Single-Atom Sites for Screening of Optimal Activity. J Phys Chem Lett 2022; 13:7043-7050. [PMID: 35900130 DOI: 10.1021/acs.jpclett.2c01398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) are crucial in various energy conversion and storage technologies. Performances of catalysts are appreciably affected by the adsorption energies of key reaction intermediates, whereas the active site engineering to achieve optimal adsorption energy remains challenging. Herein, using density functional theory calculations, we proposed a novel design of transition metal single-atom active sites supported by carbon nanocone (CNC) with high coordination diversity. The particularly diversified electronic states of CNC carbon atoms endow varying coordination to the metal active sites, which then results in a near-continuum distribution of adsorption energies for key intermediates. With this mode, 33 CNC-based active sites exhibit outstanding catalytic potential for the HER with near-zero free energy barriers. Meanwhile, five distinct Cu-N3 active sites can serve as promising candidates for the ORR with low overpotentials. Our work suggests a new strategy of making nanocone-based single-atom catalysts with promising catalytic performance.
Collapse
Affiliation(s)
- Linjie Deng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiyu Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiquan Luo
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Li Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
- Theoretical Chemistry, Technische Universität Dresden, Mommsenstrasse 13, Dresden 01062, Germany
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Li Z, Ma R, Ju Q, Liu Q, Liu L, Zhu Y, Yang M, Wang J. Spin engineering of single-site metal catalysts. Innovation (N Y) 2022; 3:100268. [PMID: 35789959 PMCID: PMC9249949 DOI: 10.1016/j.xinn.2022.100268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Single-site metal atoms (SMAs) on supports are attracting extensive interest as new catalytic systems because of maximized atom utilization and superior performance. However, rational design of configuration-optimized SMAs with high activity from the perspectives of fundamental electron spin is highly challenging. Herein, N-coordinated Fe single atoms are successfully distributed over axial carbon micropores to form dangling-FeN4 centers (d-FeN4). This unique d-FeN4 demonstrates much higher intrinsic activity toward oxygen reduction reaction (ORR) in HClO4 than FeN4 without micropore underneath and commercial Pt/C. Both theoretical calculation and electronic structure characterization imply that d-FeN4 endows central Fe with medium spin (t2g4 eg1), which provides a spin channel for electron transition compared with FeN4 with low spin. This leads to the facile formation of the singlet state of oxygen-containing species from triplet oxygen during the ORR, thus showing faster kinetics than FeN4. This work provides an in-depth understanding of spin tuning on SMAs for advanced energy catalysis. Single-site FeN4 species are designed to dangle over axial carbon micropores (d-FeN4) d-FeN4 shows much superior oxygen reduction reactivity to traditional FeN4 d-FeN4 facilitates the formation of singlet-state oxygen-containing species with optimized spin states by micropore This work provides in-depth understanding of spin tuning for advanced catalyst design
Collapse
Affiliation(s)
- Zichuang Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruguang Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
- Corresponding author
| | - Qiangjian Ju
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Yufang Zhu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Jiacheng Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
- Corresponding author
| |
Collapse
|
13
|
Huang M, Sun C, Zhang X, Wang P, Xu S, Shi XR. The surface structure, stability, and catalytic performances toward O 2 reduction of CoP and FeCoP 2. Dalton Trans 2022; 51:10420-10431. [PMID: 35762394 DOI: 10.1039/d2dt01408d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The systematic atomistic level investigation of low-index surface structures, stabilities, and catalytic performances of CoP and FeCoP2 towards the O2 reduction reaction (ORR) is vital for their applications. Employing first-principles calculations, it is revealed that CoP and FeCoP2 present the same surface stability in the order of (101) ≈ (011) > (111) > (001) > (110) > (010) > (100). They also possess a similar Wulff equilibrium crystal shape with (101) and (011) exposing the largest surface area. From the electronic view, FeCoP2 presents improved electronic conductivity compared with CoP. From the energy view, whether FeCoP2 delivers improved electrocatalytic activity toward the ORR with respect to CoP depends on the reactive surfaces and sites. Among the 4 surfaces considered, only CoP(101), FeCoP2(101) and FeCoP2(011) delivered ORR performances theoretically when the bridge metal-metal site acts as the reactive center, which makes CoP(011) the only exception. CoP(101)-bCo-Co and FeCoP2(011)-bFe-Co exhibit a larger thermodynamic limiting potential than FeCoP2(101)-bCo-Co, suggesting their higher performances toward the ORR. The last step of HO* desorption as the rate-limiting step accounts for 3/4. The third step of transformation from O* to HO* as the most sluggish step accounts for 1/4. The work function, d-band center, Bader charge, and electronic localization function calculations are performed to reveal the HO adsorption nature. The present work provides fundamental insight into the effect of Fe doping into CoP, the determination of the catalyst surface and the key species adsorption nature to guide the rational design of high-performance materials.
Collapse
Affiliation(s)
- Mengru Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Xiangrui Zhang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Peijie Wang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| |
Collapse
|
14
|
A hierarchically ordered porous Fe, N, S tri-doped carbon electrocatalyst with densely accessible Fe-N active sites and uniform sulfur-doping for efficient oxygen reduction reaction. J Colloid Interface Sci 2022; 615:617-626. [DOI: 10.1016/j.jcis.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
|
15
|
Liu C, Wang X, Kong Z, Zhang L, Xin Z, She X, Sun J, Yang D, Li D. Electrostatic Interaction in Amino Protonated Chitosan-Metal Complex Anion Hydrogels: A Simple Approach to Porous Metal Carbides/N-Doped Carbon Aerogels for Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22151-22160. [PMID: 35507679 DOI: 10.1021/acsami.2c03443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the face of the increasingly serious rapid depletion of fossil fuels, exploring alternative energy conversion technologies may be a promising choice to alleviate this crisis. Transition metal carbides (TMCs)/carbon composites are considered as prospective electrocatalysts due to their high catalytic activities and structural stability. In this work, we report the simple synthesis of TMCs/N-doping carbon aerogels (TMCs/NCAs, including Fe3C/NCA, Mo3C2/NCA, and Fe3C-Mo2C/NCA) for the oxygen reduction reaction (ORR) using protonated chitosan/metal complex anion-chelated aerogels. Among them, the Fe3C/NCA composite possesses efficient ORR activity (similar to Pt/C), and the Fe3C/NCA-assembled Zn-air battery exhibits high power densities of about 250 mW cm-2. The density functional theory calculation reveals that the presence of graphite-N, pyridine-N, and carbon defects in the carbon framework effectively reduces the free energy of ORR occurring in Fe3C. This work provides a simple and extensible strategy for the preparation of TMCs from chitosan, which is expected to be extended to other metal carbides.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaoxia Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhenyu Kong
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lijie Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhefeng Xin
- Baoshan Hengfeng Textile Technology Company Limited, Baoshan 678000, China
| | - Xilin She
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jin Sun
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dongjiang Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|