1
|
Gogoi S, Das S, Gupta R, Verma SD. Tuning Hot-Carrier Temperature in CsPbBr 3 Perovskite Nanoplatelets through Metal Halide Passivation. J Phys Chem Lett 2025; 16:3832-3839. [PMID: 40198812 DOI: 10.1021/acs.jpclett.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
High carrier temperature and slow carrier cooling make perovskite nanostructures potential candidates for hot-carrier solar cells. Here, using time-resolved photoluminescence spectroscopy, hot-carrier dynamics is reported in strongly confined three-monolayer quasi-2D CsPbBr3 perovskite nanoplatelets characterized by sharp excitonic peaks in the absorption spectrum and narrow emission peaks in the blue region. Treatment with a PbBr2-ligand solution resulted in a remarkable seven-fold increase in photoluminescence intensity, attributed to effective passivation of surface defects due to lead(II) and bromide vacancies. Further investigations using time-resolved emission spectroscopy revealed consistent carrier cooling times of ∼300 fs for both pristine and treated nanoplatelets, indicating similar fundamental hot-carrier cooling processes. Notably, treated nanoplatelets exhibited higher carrier temperature (∼700 K), linked to increased radiative carrier density after defect passivation. This work demonstrates that treatment of quasi-2D CsPbBr3 perovskite nanoplatelets with metal halides substantially improves the optoelectronic properties. Notably, hot-carrier temperatures can be increased significantly while preserving the cooling time.
Collapse
Affiliation(s)
- Srimanta Gogoi
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Saikat Das
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ruchir Gupta
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Sachin Dev Verma
- Spectroscopy and Dynamics Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Liu J, Lu R, Yu A. Origin of the low-energy tail in the photoluminescence spectrum of CsPbBr 3 nanoplatelets: a femtosecond transient absorption spectroscopic study. Phys Chem Chem Phys 2024; 26:12179-12187. [PMID: 38591257 DOI: 10.1039/d4cp00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
CsPbBr3 nanoplatelets (NPLs), as some of the two-dimensional lead halide perovskites, have been intensively investigated due to their outstanding photophysical and photoelectric properties. However, there remain unclear fundamental issues on their carrier kinetics and the low-energy tail in their photoluminescence (PL) spectrum. In this paper, we synthesized CsPbBr3 NPLs with five [PbBr6]4- monolayers and performed comprehensive studies by using steady-state absorption, PL, and femtosecond transient absorption (fs-TA) spectroscopic measurements. We determined both the biexciton Auger recombination time (7 ± 2 ps) and trapped exciton lifetime (110 ± 15 ps) of the five monolayer CsPbBr3 NPLs. We also investigated the origin of the low-energy tail emission in their PL spectrum. More importantly, we found that a negative ΔA feature in the energy range of 2.45-2.55 eV appears in their fs-TA spectrum at 2, 4 and 10 ps delay times, which could help them act as a laser gain medium. The low-energy tail emission in their PL spectrum overlaps well with the negative ΔA feature in the energy range of 2.45-2.55 eV in their fs-TA spectrum at 2, 4 and 10 ps delay times.
Collapse
Affiliation(s)
- Jinwei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Rong Lu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Anchi Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
3
|
Wei Z, Mulder JT, Dubey RK, Evers WH, Jager WF, Houtepen AJ, Grozema FC. Tuning the Driving Force for Charge Transfer in Perovskite-Chromophore Systems. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15406-15415. [PMID: 37583440 PMCID: PMC10424230 DOI: 10.1021/acs.jpcc.3c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical characterizations and transient absorption spectroscopy, we have investigated the mechanism of interfacial charge transfer (CT) between colloidal CsPbBr3 nanoplatelets (NPLs) and surface-anchored perylene derivatives and have explored the possibility of controlling the CT rate by tuning the driving force. The CT driving force was tuned systematically by attaching acceptors with different electron affinities and by varying the bandgap of NPLs via thickness-controlled quantum confinement. Our data show that the charge-separated state is formed by selectively exciting either the electron donors or acceptors in the same system. Upon exciting attached acceptors, hole transfer from perylene derivatives to CsPbBr3 NPLs takes place on a picosecond time scale, showing an energetic behavior in line with the Marcus normal regime. Interestingly, such energetic behavior is absent upon exciting the electron donor, suggesting that the dominant CT mechanism is energy transfer followed by ultrafast hole transfer. Our findings not only elucidate the photophysics of perovskite-molecule systems but also provide guidelines for tailoring such hybrid systems for specific applications.
Collapse
Affiliation(s)
- Zimu Wei
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jence T. Mulder
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rajeev K. Dubey
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wolter F. Jager
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan J. Houtepen
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ferdinand C. Grozema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Carwithen BP, Hopper TR, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan MA, Frost JM, Leo K, Vaynzof Y, Bodnarchuk MI, Kovalenko MV, Bakulin AA. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. ACS NANO 2023; 17:6638-6648. [PMID: 36939330 PMCID: PMC10100565 DOI: 10.1021/acsnano.2c12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.
Collapse
Affiliation(s)
- Ben P. Carwithen
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ziyuan Ge
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Rozana Mazlumian
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Franziska Krieg
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Georgian Nedelcu
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Martin Kroll
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, 01069 Dresden, Germany
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Miguel Albaladejo Siguan
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarvist M. Frost
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Karl Leo
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
5
|
Zhang M, Bi C, Xia Y, Sun X, Wang X, Liu A, Tian S, Liu X, de Leeuw NH, Tian J. Water-Driven Synthesis of Deep-Blue Perovskite Colloidal Quantum Wells for Electroluminescent Devices. Angew Chem Int Ed Engl 2023; 62:e202300149. [PMID: 36692366 DOI: 10.1002/anie.202300149] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Perovskite colloidal quantum wells (QWs) are promising to realize narrow deep-blue emission, but the poor optical performance and stability suppress their practical application. Here, we creatively propose a water-driven synthesis strategy to obtain size-homogenized and strongly confined deep-blue CsPbBr3 QWs, corresponding to three monolayers, which emit at the deep-blue wavelength of 456 nm. The water controls the orientation and distribution of the ligands on the surface of the nanocrystals, thus inducing orientated growth through the Ostwald ripening process by phagocytizing unstable nanocrystals to form well-crystallized QWs. These QWs present remarkable stability and high photoluminescence quantum yield of 94 %. Furthermore, we have prepared light-emitting diodes based on the QWs via the all-solution fabrication strategy, achieving an external quantum efficiency of 1 % and luminance of 2946 cd m-2 , demonstrating state-of-the-art brightness for perovskite QW-based LEDs.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Chenghao Bi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Sun
- Institute of Semiconductors Chinese Academy of Sciences, Beijing, 100083, China
| | - Xingyu Wang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Shuyu Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| |
Collapse
|