1
|
Darweesh R, Yadav RK, Adler E, Poplinger M, Levi A, Lee JJ, Leshem A, Ramasubramaniam A, Xia F, Naveh D. Nonlinear self-calibrated spectrometer with single GeSe-InSe heterojunction device. SCIENCE ADVANCES 2024; 10:eadn6028. [PMID: 38758797 PMCID: PMC11100572 DOI: 10.1126/sciadv.adn6028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Computational spectrometry is an emerging field that uses photodetection in conjunction with numerical algorithms for spectroscopic measurements. Compact single photodetectors made from layered materials are particularly attractive since they eliminate the need for bulky mechanical and optical components used in traditional spectrometers and can easily be engineered as heterostructures to optimize device performance. However, such photodetectors are typically nonlinear devices, which adds complexity to extracting optical spectra from their response. Here, we train an artificial neural network to recover the full nonlinear spectral photoresponse of a single GeSe-InSe p-n heterojunction device. The device has a spectral range of 400 to 1100 nm, a small footprint of ~25 × 25 square micrometers, and a mean reconstruction error of 2 × 10-4 for the power spectrum at 0.35 nanometers. Using our device, we demonstrate a solution to metamerism, an apparent matching of colors with different power spectral distributions, which is a fundamental problem in optical imaging.
Collapse
Affiliation(s)
- Rana Darweesh
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Institue of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Rajesh Kumar Yadav
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Institue of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Elior Adler
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Institue of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Michal Poplinger
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Institue of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Adi Levi
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Institue of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Jea-Jung Lee
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Amir Leshem
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Ashwin Ramasubramaniam
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Science and Engineering Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | - Doron Naveh
- Faculty of Engineering, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Institue of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| |
Collapse
|
2
|
Chen G, Meng W, Guan X, Zhao P, Jia S, Zheng H, Zhao D, Wang J. Strong interlayer coupling and unusual antisite defect-mediated p-type conductivity in GeP x ( x = 1, 2). NANOSCALE 2023; 15:9139-9147. [PMID: 37144280 DOI: 10.1039/d3nr01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As an emerging candidate for anisotropic two-dimensional materials, the group IV-V family (e.g. GeP, GeP2) has appealing applications in photoelectronics. However, their intrinsic point defect properties, which largely determine the device performance and optimization, are still poorly explored. In our study, through density functional theory (DFT) calculations, antisite defects were affirmed to be dominant with the lowest formation energies in 2D GePx semiconductors because of the similar atomic size and electronegativity of elemental components, which is in contrast to previous calculations and experimental speculation. These antisite defects could introduce relatively shallow states within the bandgap in bulk cases. The transition energy levels and electronic structures of defects reveal that GeP and PGe antisites act as dominant acceptors and donors, respectively. Strong interlayer coupling between anions results in a significant upshift of the valence band maximum (VBM) and shallower acceptor behaviors of GePx. Together with the dominant GeP antisite defect, the large upshift of the VBM in GeP leads to a remarkable transition of conductivity from intrinsic in the monolayer to p-type in the bulk. Such a synergistic effect in GeP2 is rather weak due to the strong inherent intralayer coupling of anions. Our research provides deep insights into the strong anion coupling effects on the electronic structures and defect properties of GeP and GeP2, which sheds light on defect engineering and electronic applications of GePx based semiconductors.
Collapse
Affiliation(s)
- Guoxujia Chen
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Weiwei Meng
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Xiaoxi Guan
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Peili Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
- Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215124, China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Dongshan Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
- Core Facility of Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Zhao L, Jiang Y, Li C, Liang Y, Wei Z, Wei X, Zhang Q. Probing Anisotropic Deformation and Near-Infrared Emission Tuning in Thin-Layered InSe Crystal under High Pressure. NANO LETTERS 2023; 23:3493-3500. [PMID: 37023469 DOI: 10.1021/acs.nanolett.3c00593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Indium selenide (InSe) exhibits high lattice compressibility and an extraordinary capability of tailoring the optical band gap under pressure beyond other 2D materials. Herein, by applying hydrostatic pressure via a diamond anvil cell, we revealed an anisotropic deformation dynamic and efficient manipulation of near-infrared light emission in thin-layered InSe strongly correlated to layer numbers (N = 5-30). As N > 20, the InSe lattice is compressed in all directions, and the intralayer compression leads to widening of the band gap, resulting in an emission blue shift (∼120 meV at 1.5 GPa). In contrast, as N ≤ 15, an efficient emission red shift is observed from band gap shrinkage (rate of 100 meV GPa-1), which is attributed to the predominant uniaxial interlayer compression because of the high strain resistance along the InSe-diamond interface. These findings advance the understanding of pressure-induced lattice deformation and optical transition evolution in InSe and could be applied to other 2D materials.
Collapse
Affiliation(s)
- Liyun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- International school for optoelectronic engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingjie Jiang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Chun Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- Peking University Nanchang Innovation Institute, Nanchang 330000, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Liao J, Wen W, Wu J, Zhou Y, Hussain S, Hu H, Li J, Liaqat A, Zhu H, Jiao L, Zheng Q, Xie L. Van der Waals Ferroelectric Semiconductor Field Effect Transistor for In-Memory Computing. ACS NANO 2023; 17:6095-6102. [PMID: 36912657 DOI: 10.1021/acsnano.3c01198] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In-memory computing is a highly efficient approach for breaking the bottleneck of von Neumann architectures, i.e., reducing redundant latency and energy consumption during the data transfer between the physically separated memory and processing units. Herein we have designed a in-memory computing device, a van der Waals ferroelectric semiconductor (InSe) based metal-oxide-ferroelectric semiconductor field-effect transistor (MOfeS-FET). This MOfeS-FET integrates memory and logic functions in the same material, in which the out-of-plane (OOP) ferroelectric polarization in InSe is used for data storage and the semiconducting property is used for the logic computation. The MOfeS-FET shows a long retention time with high on/off ratios (>106), high program/erase (P/E) ratios (103), and stable cyclic endurance. Moreover, inverter, programmable NAND, and NOR Boolean logic operations with nonvolatile storage of the results have all been demonstrated using our approach. These findings highlight the potential of van der Waals ferroelectric semiconductor-based MOfeS-FETs in the in-memory computing and their potential of achieving size scaling beyond Moore's law.
Collapse
Affiliation(s)
- Junyi Liao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wen Wen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yaming Zhou
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Sabir Hussain
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Haowen Hu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Jiawei Li
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Adeel Liaqat
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Hongwei Zhu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Liying Jiao
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
5
|
Yang B, Gao W, Li H, Gao P, Yang M, Pan Y, Wang C, Yang Y, Huo N, Zheng Z, Li J. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging. NANOSCALE 2023; 15:3520-3531. [PMID: 36723020 DOI: 10.1039/d2nr06642d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Broadband photodetectors are a category of optoelectronic devices that have important applications in modern communication information. γ-InSe is a newly developed two-dimensional (2D) layered semiconductor with an air-stable and low-symmetry crystal structure that is suitable for polarization-sensitive photodetection. Herein, we report a P-N photodiode based on 3D Ge/2D γ-InSe van der Waals heterojunction (vdWH). A built-in electric field is introduced at the p-Ge/n-InSe interface to suppress the dark current and accelerate the separation of photogenerated carriers. Moreover, the heterojunction belongs to the accumulation mode with a well-designed type-II band arrangement, which is suitable for the fast separation of photogenerated carriers. Driven by these advantages, the device exhibits excellent photovoltaic performance within the detection range of 400 to 1600 nm and shows a double photocurrent peak at around 405 and 1550 nm. In particular, the responsivity (R) is up to 9.78 A W-1 and the specific detectivity (D*) reaches 5.38 × 1011 Jones with a fast response speed of 46/32 μs under a 1550 nm laser. Under blackbody radiation, the room temperature R and D* in the mid-wavelength infrared region are 0.203 A W-1 and 5.6 × 108 Jones, respectively. Moreover, polarization-sensitive light detection from 405-1550 nm was achieved, with the dichroism ratios of 1.44, 3.01, 1.71, 1.41 and 1.34 at 405, 635, 808, 1310 and 1550 nm, respectively. In addition, high-resolution single-pixel imaging capability is demonstrated at visible and near-infrared wavelengths. This work reveals the great potential of the γ-InSe/Ge photodiode for high-performance, broadband, air-stable and polarization-sensitive photodetection.
Collapse
Affiliation(s)
- Baoxiang Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Wei Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Hengyi Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Peng Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yuan Pan
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Chuanglei Wang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yani Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Nengjie Huo
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Jingbo Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| |
Collapse
|
6
|
Solid Phase Epitaxy of Single Phase Two-Dimensional Layered InSe Grown by MBE. NANOMATERIALS 2022; 12:nano12142435. [PMID: 35889659 PMCID: PMC9316289 DOI: 10.3390/nano12142435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Single-phase two-dimensional (2D) indium monoselenide (γ-InSe) film is successfully grown via solid phase epitaxy in the molecular beam epitaxy (MBE) system. Having high electron mobility and high photoresponsivity, ultrathin 2D γ-InSe semiconductors are attractive for future field-effect transistor and optoelectronic devices. However, growing single-phase γ-InSe film is a challenge due to the polymorphic nature of indium selenide (γ-InSe, α-In2Se3, β-In2Se3, γ-In2Se3, etc.). In this work, the 2D α-In2Se3 film was first grown on a sapphire substrate by MBE. Then, the high In/Se ratio sources were deposited on the α-In2Se3 surface, and an γ-InSe crystal emerged via solid-phase epitaxy. After 50 min of deposition, the initially 2D α-In2Se3 phase was also transformed into a 2D γ-InSe crystal. The phase transition from 2D α-In2Se3 to γ-InSe was confirmed by Raman, XRD, and TEM analysis. The structural ordering of 2D γ-InSe film was characterized by synchrotron-based grazing-incidence wide-angle X-ray scattering (GIWAXS).
Collapse
|