1
|
Panja S, Mandal P, Mannar S, Das A, Narasimhan S, Viswanatha R. Ni doping in CsPbCl 3 nanocrystals: the key to enhanced photoluminescence. Chem Sci 2025:d5sc00564g. [PMID: 40303460 PMCID: PMC12035753 DOI: 10.1039/d5sc00564g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
This study presents a generic method to selectively enhance radiative pathways over non-radiative states by leveraging vibrational coupling between the host lattice and mid-gap states of doped transition metal ions. While previously demonstrated with Mn, this work successfully incorporates Ni2+ ions into CsPbCl3 perovskite nanocrystals (NCs), showcasing the method's versatility and tunability for radiative decay rates. Structural analyses confirm Ni2+ integration, while temperature-dependent photoluminescence studies reveal that Ni-induced shallow trap states enable vibrational coupling, facilitating charge carrier back-transfer to excitonic states. At 2% doping, this mechanism optimally enhances radiative recombination, achieving room-temperature vibrationally assisted delayed fluorescence (VADF). Förster resonance energy transfer (FRET) experiments further validate the improved radiative efficiency. This work establishes transition metal doping as a transformative and selective strategy for tuning optical properties, paving the way for advancements in energy-efficient technologies such as light-emitting diodes, lasers, and photovoltaics.
Collapse
Affiliation(s)
- Soumya Panja
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Prasenjit Mandal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Subhashri Mannar
- International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Arpan Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Shobhana Narasimhan
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Ranjani Viswanatha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
- International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| |
Collapse
|
2
|
Aftabuzzaman M, Hong Y, Jeong S, Levan R, Lee SJ, Choi DH, Lee K. Colloidal Perovskite Nanocrystals for Blue-Light-Emitting Diodes and Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409736. [PMID: 40059086 PMCID: PMC12005814 DOI: 10.1002/advs.202409736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Indexed: 04/19/2025]
Abstract
The evolution of display technology toward ultrahigh resolution, high color purity, and cost-effectiveness has generated interest in metal halide perovskites, particularly colloidal perovskite nanocrystals (PeNCs). PeNCs exhibit narrow emission spectra, high photoluminescence quantum yields, and wide color gamuts, rendering them promising candidates for next-generation displays. Despite significant advancements in perovskite light-emitting diode (PeLED) technology, challenges remain regarding the efficiencies of PeNC-based blue LEDs. Addressing these challenges, including both inherent and external instabilities of PeNCs and operational instabilities of the devices, is important as they collectively impede the broader acceptance and utilization of PeNCs. Herein, a comprehensive overview of the syntheses of dimension- and composition-controlled blue colloidal PeNCs and critical factors influencing the performances of colloidal PeNC-based blue LEDs is provided. Moreover, the advancements of colloidal PeNC-based blue LEDs and challenges associated with the application of these LEDs are explored, and the potentials of these LEDs for application in next-generation displays are emphasized. This review highlights the path forward for the future development of PeNC-based blue LEDs.
Collapse
Affiliation(s)
- Md Aftabuzzaman
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Yongju Hong
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sangyeon Jeong
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Ratiani Levan
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Seung Jin Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
3
|
Suhail A, Beniwal S, Kumar R, Kumar A, Bag M. Hybrid halide perovskite quantum dots for optoelectronics applications: recent progress and perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163002. [PMID: 40014916 DOI: 10.1088/1361-648x/adbb47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs (PQDs). PQDs boast high photoluminescent quantum yield, tunable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how lead halide perovskites like CsPbBr3undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights PQDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.
Collapse
Affiliation(s)
- Atif Suhail
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shivang Beniwal
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| | - Ramesh Kumar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE, 75120 Uppsala, Sweden
| | - Anjali Kumar
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Bag
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Zhou Y, Jiang C, Wang Z, Yi Z, Chen X. Photon Reabsorption and Surface Plasmon Modulating Exciton-to-Dopant Energy Transfer Dynamics in Mn:CsPb(BrCl) 3 Quantum Dots. J Phys Chem Lett 2025; 16:1620-1628. [PMID: 39907603 DOI: 10.1021/acs.jpclett.4c03526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Exciton-to-dopant energy transfer (ET) dynamics of Mn:CsPbX3 quantum dots (QDs), which is dominated by diverse physical factors, requires more comprehensive understanding. Here, the concentration-dependent photon reabsorption effect on ET dynamics has been meticulously analyzed in colloidal Mn:CsPb(BrCl)3 QDs. The results indicate that the photons emitted by the smaller QDs are absorbed by the larger QDs, effectively providing additional excitation light to the latter. The reabsorbed photons play a crucial role in significantly enhancing the ET process in the larger QDs. Additionally, the Mn:CsPb(BrCl)3 QDs/Poly(methyl methacrylate)/Ag/SiO2 multilayer films were fabricated to study the influence of the surface plasmon (SP) on ET dynamics. The results reveal that resonant energy transfer between excitons and SP via dipole interactions can regulate the ET process and Mn2+ emission intensity by controlling the distance between the SP and excitons. These findings provide insights into Mn:CsPbX3 QD ET dynamics and potential methods for controlling their luminescence performance in practical applications.
Collapse
Affiliation(s)
- Yue Zhou
- Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chao Jiang
- Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengxing Wang
- Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xifang Chen
- Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
de Souza GF, Magalhães LF, de Souza Carvalho TA, Ferreira DL, Pereira RS, da Cunha TR, Bettini J, Schiavon MA, Vivas MG. Probing the cw-Laser-Induced Fluorescence Enhancement in CsPbBr 3 Nanocrystal Thin Films: An Interplay between Photo and Thermal Activation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34303-34312. [PMID: 38885089 PMCID: PMC11231974 DOI: 10.1021/acsami.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Perovskite nanocrystals hold significant promise for a wide range of applications, including solar cells, LEDs, photocatalysts, humidity and temperature sensors, memory devices, and low-cost photodetectors. Such technological potential stems from their exceptional quantum efficiency and charge carrier conduction capability. Nevertheless, the underlying mechanisms of photoexcitation, such as phase segregation, annealing, and ionic diffusion, remain insufficiently understood. In this context, we harnessed hyperspectral fluorescence microspectroscopy to advance our comprehension of fluorescence enhancement triggered by UV continuous-wave (cw) laser irradiation of CsPbBr3 colloidal nanocrystal thin films. Initially, we explored the kinetics of fluorescence enhancement and observed that its efficiency (φph) correlates with the laser power (P), following the relationship φph = 7.7⟨P⟩0.47±0.02. Subsequently, we estimated the local temperature induced by the laser, utilizing the finite-difference method framework, and calculated the activation energy (Ea) required for fluorescence enhancement to occur. Our findings revealed a very low activation energy, Ea ∼ 9 kJ/mol. Moreover, we mapped the fluorescence photoenhancement by spatial scanning and real-time static mode to determine its microscale length. Below a laser power of 60 μW, the photothermal diffusion length exhibited nearly constant values of approximately (22 ± 5) μm, while a significant increase was observed at higher laser power levels. These results were ascribed to the formation of nanocrystal superclusters within the film, which involves the interparticle spacing reduction, creating the so-called quantum dot solid configuration along with laser-induced annealing for higher laser powers.
Collapse
Affiliation(s)
- Gabriel Fabrício de Souza
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Letícia Ferreira Magalhães
- Grupo de Pesquisa em Química de Materiais, Universidade Federal de São João del-Rei, 36301-160 São João del-Rei, MG, Brazil
| | | | - Diego Lourençoni Ferreira
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Richard Silveira Pereira
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Thiago Rodrigues da Cunha
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas, São Paulo, Brazil
| | - Marco Antônio Schiavon
- Grupo de Pesquisa em Química de Materiais, Universidade Federal de São João del-Rei, 36301-160 São João del-Rei, MG, Brazil
| | - Marcelo Gonçalves Vivas
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| |
Collapse
|
6
|
Yu M, Kuang X, Tian H, Cui Y, Zhou S, Chen J, Ma J, Mao A. Laser-Driven Insulator-Metal Phase Transitions in CsPbI 3 Quantum Dots and Influence of Doped Metal Nanowires. J Phys Chem Lett 2023; 14:10012-10018. [PMID: 37906613 DOI: 10.1021/acs.jpclett.3c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
All-inorganic CsPbI3 perovskite quantum dots (QDs) have received extensive attention in developing optoelectronic devices due to their outstanding properties. Here, using time-dependent density functional theory (TDDFT), the optical properties of the three distinct phases (α, γ, and δ) of the CsPbI3 QDs are investigated. Surprisingly, the δ phase structured QDs exhibit stronger optical absorption properties than the α and γ phase QDs when exposed to equivalent laser irradiation. Considering the quantum size effect, size regulation is also performed on the three structures, the results reveal a significant improvement in optical properties as the size increases in the direction of laser irradiation. More interestingly, Ag-hybrid QDs show better optical gain and maintain a laser-driven metallic state. Our results demonstrate the great potential of size adjustment and metal nanowire coupling in improving the optoelectronic properties of QDs and developing efficient photovoltaic devices.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Hao Tian
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yingqi Cui
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Siyuan Zhou
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Jichao Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Jiancheng Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Aijie Mao
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Greytak AB, Abiodun SL, Burrell JM, Cook EN, Jayaweera NP, Islam MM, Shaker AE. Thermodynamics of nanocrystal–ligand binding through isothermal titration calorimetry. Chem Commun (Camb) 2022; 58:13037-13058. [DOI: 10.1039/d2cc05012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications.
Collapse
Affiliation(s)
- Andrew B. Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Sakiru L. Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Jennii M. Burrell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Emily N. Cook
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nuwanthaka P. Jayaweera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Md Moinul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Abdulla E Shaker
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|