1
|
Hu XM, Liang HQ, Rosas-Hernández A, Daasbjerg K. Electrochemical valorization of captured CO 2: recent advances and future perspectives. Chem Soc Rev 2025; 54:1216-1250. [PMID: 39655650 DOI: 10.1039/d4cs00480a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The excessive emission of CO2 has led to severe climate change, prompting global concern. Capturing CO2 and converting it through electrochemistry into value-added products represent promising approaches to mitigating CO2 emissions and closing the carbon cycle. Traditionally, these two processes have been performed independently, involving multiple steps, high energy consumption, and low efficiency. Recently, the electrochemical conversion of captured CO2, which integrates the capture and conversion processes (also referred to as electrochemically reactive CO2 capture), has garnered increasing attention. This integrated approach bypasses the energy-intensive steps involved in the traditional independent process, including CO2 release, purification, compression, transportation, and storage. In this review, we discuss recent advances in the electrochemical conversion of captured CO2, focusing on four key aspects. First, we introduce various capture media, emphasizing the thermodynamic aspects of carbon capture and their implications for integration with electrochemical conversion. Second, we discuss product control mediated by the selection of different catalysts, highlighting the connections between the conversion of captured CO2 and gas-fed CO2. Third, we examine the effect of reactor systems and operational conditions on the electrochemical conversion of captured CO2, shedding light on performance optimization. Finally, we explore real integration systems for CO2 capture and electrochemical conversion, revealing the potential of this new technology for practical applications. Overall, we provide insights into the existing challenges, potential solutions, and thoughts on opportunities and future directions in the emerging field of electrochemical conversion of captured CO2.
Collapse
Affiliation(s)
- Xin-Ming Hu
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Hong-Qing Liang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Alonso Rosas-Hernández
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Xu Z, Ma C, Tang B, Dong J, Zhang Q. GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO 2-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc. J Phys Chem Lett 2025; 16:294-307. [PMID: 39723941 DOI: 10.1021/acs.jpclett.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO2 to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range. The strongly electron-donating NMe2-substituted CoPc is found to be an excellent candidate. The dynamic product distribution reveals that the key to selectivity and durability balance is to regulate both the potential of the highest methanol Faradaic efficiency and the corresponding energy barrier of the selectivity-determining step for hydrogenated CoPc. The pivotal factor in HER regulation stems from hindered H adsorption due to ligand hydrogenation, arising from the decreased Co-to-H charge transfer. The dynamic product distribution analysis provides intuitive theoretical guidance for highly selective and durable CO2 electroreduction.
Collapse
Affiliation(s)
- Zhiyuan Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Beibei Tang
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Jieyang Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Yoo JM, Ingenmey J, Salanne M, Lukatskaya MR. Anion Effect in Electrochemical CO 2 Reduction: From Spectators to Orchestrators. J Am Chem Soc 2024; 146:31768-31777. [PMID: 39406354 PMCID: PMC11583205 DOI: 10.1021/jacs.4c10661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) offers a pathway to produce valuable chemical fuels from CO2. However, its efficiency in aqueous electrolytes is hindered by the concurrent H2 evolution reaction (HER), which takes place at similar potentials. While the influence of cations on this process has been extensively studied, the influence of anions remains largely unexplored. In this work, we study how eCO2RR selectivity and activity on a gold catalyst are affected by a wide range of inorganic and carboxylate anions. We utilize in situ differential electrochemical mass spectrometry (DEMS) for real-time product monitoring coupled with molecular dynamics (MD) simulations. We show that anions significantly impact eCO2RR kinetics and eCO2RR selectivity. MD simulations reveal a new descriptor─free energy of anion physisorption─where weakly adsorbing anions enable favorable CO2 reduction kinetics, despite the negative charge carried by the electrode surface. By leveraging these fundamental insights, we identify propionate as the most promising anion, achieving nearly 100% Faradaic efficiency while showing high CO production rates that are comparable to those in bicarbonate. These insights underscore the vital role of anion selection in achieving a highly efficient eCO2RR in aqueous electrolytes.
Collapse
Affiliation(s)
- Ji Mun Yoo
- Electrochemical Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Johannes Ingenmey
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Chen Y, Zhang Z, Wu Y, Wu Y, Wang J, Liu M, Chen L. Surfactant-Free Method to Prevent Gold Nanoparticle Aggregation and Its Surface-Enhanced Raman Scattering Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21832-21841. [PMID: 39356478 DOI: 10.1021/acs.langmuir.4c03096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The introduction of surfactants to stabilize colloidal citrate-reduced gold nanoparticles (prevent aggregation) is usually used in surface-enhanced Raman scattering (SERS) applications. However, the surfactants have many drawbacks for SERS applications, such as increasing the SERS background and blocking surface active sites. Here, we develop a surfactant-free method to stabilize colloidal cit-AuNPs based on alkali regulation, and this method can prevent gold nanoparticle aggregation under different harsh treatments, including ligand modification, centrifugation-based washing/enrichment, and salt addition. The SERS spectra, density functional theory simulation, and ζ potentials of cit-AuNPs indicate that the stability of enhanced cit-AuNPs under alkaline conditions is attributed to both the increased negative charge density (by ∼6 times from pH 7 to 12) and the molecular configuration on the metal surface. Compared with surfactant-based methods, this method can well maintain the inherent optical and interface properties of nanoparticles, avoid the SERS background, and avoid blocking of the surface active site due to the presence of surfactants. This method will enable AuNPs to have a wide range of applications in areas such as highly sensitive SERS sensors.
Collapse
Affiliation(s)
- Yan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai 264003, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meichun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai 264003, China
| |
Collapse
|
5
|
Liu X, Huang M, Yang S, Devasenathipathy R, Xie L, Yang Z, Wang L, Huang D, Peng X, Chen DH, Li JF, Fan Y, Chen W. Spatially Confined Radical Addition Reaction for Electrochemical Synthesis of Carboxylated Graphene and its Applications in Water Desalination and Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401972. [PMID: 38770749 DOI: 10.1002/smll.202401972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Due to the chemical stability of graphene, synthesis of carboxylated graphene still remains challenging during the electrochemical exfoliation of graphite. In this work, a spatially confined radical addition reaction which occurs in the sub-nanometer scaled interlayers of the expanded graphene sheets for the electrochemical synthesis of highly stable carboxylated graphene is reported. Here, formate anions act as both intercalation ions and co-reactant acid for the confinement of electro-generated carboxylic radical (●COOH) in the sub-nanometer scaled interlayers, which facilitates the radical addition reaction on graphene sheets. The controllable carboxylation of graphene is realized by tuning the concentration of formate anions in the electrolyte solution. The high crystallinity of the obtained product indicates the occurrence of spatially confined ●COOH addition reaction between the sub-nanometer interlayers of expanded graphite. In addition, the carboxylated graphene have been used for water desalination and hydrogen/oxygen reduction reaction. Therefore, this work provides a new method for the in situ preparation of functionalized graphene through the electrolysis and its applications in water desalination and hydrogen/oxygen reduction reactions.
Collapse
Affiliation(s)
- Xiaotian Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mingzheng Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rajkumar Devasenathipathy
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Linhong Xie
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhongyun Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Limin Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dujuan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xinglan Peng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
6
|
Zhang J, Xia S, Wang Y, Wu J, Wu Y. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction. iScience 2024; 27:110005. [PMID: 38846002 PMCID: PMC11154216 DOI: 10.1016/j.isci.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Electrocatalysts undergo structural evolution under operating electrochemical CO2 reduction reaction (CO2RR) conditions. This dynamic reconstruction correlates with variations in CO2RR activity, selectivity, and stability, posing challenges in catalyst design for electrochemical CO2RR. Despite increased research on the reconstruction behavior of CO2RR electrocatalysts, a comprehensive understanding of their dynamic structural evolution under reaction conditions is lacking. This review summarizes recent developments in the dynamic reconstruction of catalysts during the CO2RR process, covering fundamental principles, modulation strategies, and in situ/operando characterizations. It aims to enhance understanding of electrocatalyst dynamic reconstruction, offering guidelines for the rational design of CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Jianfang Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuai Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230009, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Whittaker TN, Fishler Y, Clary JM, Brimley P, Holewinski A, Musgrave CB, Farberow CA, Smith WA, Vigil-Fowler D. Insights into Electrochemical CO 2 Reduction on Metallic and Oxidized Tin Using Grand-Canonical DFT and In Situ ATR-SEIRA Spectroscopy. ACS Catal 2024; 14:8353-8365. [PMID: 38868105 PMCID: PMC11165454 DOI: 10.1021/acscatal.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
Electrochemical CO2 reduction (CO2R) to formate is an attractive carbon emissions mitigation strategy due to the existing market and attractive price for formic acid. Tin is an effective electrocatalyst for CO2R to formate, but the underlying reaction mechanism and whether the active phase of tin is metallic or oxidized during reduction is openly debated. In this report, we used grand-canonical density functional theory and attenuated total reflection surface-enhanced infrared absorption spectroscopy to identify differences in the vibrational signatures of surface species during CO2R on fully metallic and oxidized tin surfaces. Our results show that CO2R is feasible on both metallic and oxidized tin. We propose that the key difference between each surface termination is that CO2R catalyzed by metallic tin surfaces is limited by the electrochemical activation of CO2, whereas CO2R catalyzed by oxidized tin surfaces is limited by the slow reductive desorption of formate. While the exact degree of oxidation of tin surfaces during CO2R is unlikely to be either fully metallic or fully oxidized, this study highlights the limiting behavior of these two surfaces and lays out the key features of each that our results predict will promote rapid CO2R catalysis. Additionally, we highlight the power of integrating high-fidelity quantum mechanical modeling and spectroscopic measurements to elucidate intricate electrocatalytic reaction pathways.
Collapse
Affiliation(s)
- Todd N. Whittaker
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Yuval Fishler
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jacob M. Clary
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Materials,
Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Paige Brimley
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Adam Holewinski
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Charles B. Musgrave
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
- Materials
Science and Engineering Program, University
of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Carrie A. Farberow
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Wilson A. Smith
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Derek Vigil-Fowler
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Materials,
Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Yang F, Jiang S, Liu S, Beyer P, Mebs S, Haumann M, Roth C, Dau H. Dynamics of bulk and surface oxide evolution in copper foams for electrochemical CO 2 reduction. Commun Chem 2024; 7:66. [PMID: 38548895 PMCID: PMC10978924 DOI: 10.1038/s42004-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Oxide-derived copper (OD-Cu) materials exhibit extraordinary catalytic activities in the electrochemical carbon dioxide reduction reaction (CO2RR), which likely relates to non-metallic material constituents formed in transitions between the oxidized and the reduced material. In time-resolved operando experiment, we track the structural dynamics of copper oxide reduction and its re-formation separately in the bulk of the catalyst material and at its surface using X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy. Surface-species transformations progress within seconds whereas the subsurface (bulk) processes unfold within minutes. Evidence is presented that electroreduction of OD-Cu foams results in kinetic trapping of subsurface (bulk) oxide species, especially for cycling between strongly oxidizing and reducing potentials. Specific reduction-oxidation protocols may optimize formation of bulk-oxide species and thereby catalytic properties. Together with the Raman-detected surface-adsorbed *OH and C-containing species, the oxide species could collectively facilitate *CO adsorption, resulting an enhanced selectivity towards valuable C2+ products during CO2RR.
Collapse
Affiliation(s)
- Fan Yang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Shan Jiang
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Si Liu
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Paul Beyer
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Christina Roth
- Electrochemical Process Engineering, Universität Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.
| |
Collapse
|
9
|
Amirbeigiarab R, Magnussen OM. In situ scanning tunneling microscopy studies of carbonate-induced restructuring of Ag-decorated Cu(100) electrodes. Phys Chem Chem Phys 2023; 25:24871-24877. [PMID: 37680172 DOI: 10.1039/d3cp02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Ag-decorated Cu electrocatalysts are of great interest for electrochemical CO2 reduction, because of an increased yield of multi-carbon products. Here, we present studies of well-defined AgCu electrodes by in situ scanning tunneling microscopy. These bimetallic model electrocatalysts are prepared by electrodepositing submonolayer Ag coverages on Cu(100) in 0.1 M H2SO4, resulting in monolayer islands with a hexagonal quasi-Ag(111) atomic lattice. Upon exchanging the solution at potentials in the double layer range to 0.1 M KHCO3, pronounced Ag island restructuring towards anisotropic shapes, the nucleation and growth of new islands, and a strong reduction in surface mobility are observed. In addition, high-resolution images reveal a highly disordered molecular adlayer, contrary to the case of Ag-free Cu(100) electrodes. These observations can be explained by interactions of metal adatoms with adsorbed (bi)carbonate and show that Ag redispersion on Cu electrocatalysts may occur even in the absence of CO2 reduction.
Collapse
Affiliation(s)
- Reihaneh Amirbeigiarab
- Institute of Experimental and Applied Physics, Kiel University, Olshausenstr. 40, 24098 Kiel, Germany.
| | - Olaf M Magnussen
- Institute of Experimental and Applied Physics, Kiel University, Olshausenstr. 40, 24098 Kiel, Germany.
| |
Collapse
|
10
|
Serafini M, Mariani F, Basile F, Scavetta E, Tonelli D. From Traditional to New Benchmark Catalysts for CO 2 Electroreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111723. [PMID: 37299627 DOI: 10.3390/nano13111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the last century, conventional strategies pursued to reduce or convert CO2 have shown limitations and, consequently, have been pushing the development of innovative routes. Among them, great efforts have been made in the field of heterogeneous electrochemical CO2 conversion, which boasts the use of mild operative conditions, compatibility with renewable energy sources, and high versatility from an industrial point of view. Indeed, since the pioneering studies of Hori and co-workers, a wide range of electrocatalysts have been designed. Starting from the performances achieved using traditional bulk metal electrodes, advanced nanostructured and multi-phase materials are currently being studied with the main goal of overcoming the high overpotentials usually required for the obtainment of reduction products in substantial amounts. This review reports the most relevant examples of metal-based, nanostructured electrocatalysts proposed in the literature during the last 40 years. Moreover, the benchmark materials are identified and the most promising strategies towards the selective conversion to high-added-value chemicals with superior productivities are highlighted.
Collapse
Affiliation(s)
- Martina Serafini
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|