1
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Fang Y, Gao N, Shao L. Photoemission Enhancement of Plasmonic Hot Electrons by Au Antenna-Sensitizer Complexes. ACS NANO 2024; 18:3397-3404. [PMID: 38215310 DOI: 10.1021/acsnano.3c10364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The photoemission of surface plasmon decay-produced hot electrons is usually of very low efficiencies, hindering the practical utilization of such nonequilibrium charge carriers in harvesting photons with less energy than the semiconductor band gap for more efficient solar energy collection and photodetection. However, it has been demonstrated that the photoemission efficiency of small metal clusters increases as the particle size decreases. Recent studies have also shown that the photoemission efficiency of surface plasmon-yielded hot carriers can be intrinsically improved through proper material construction. In this paper, we report that the photoemission efficiency of hot electrons on the Au nanodisk-cluster complex/TiO2 interface can be dramatically enhanced under optical nanoantenna-sensitizer design. Such an enhancement is dominantly attributed to three factors. First, the large plasmonic nanodisk antennas provide a significantly enhanced optical near field, which largely increases light absorption in the small Au clusters that are acting as hot electron injection sensitizers. Second, the sub-3 nm size of the Au clusters facilitates the collection of delocalized spreading charges by the semiconductor. Third, the hybrid interface and molecule-like energy level of the Au cluster result in a much longer lifetime of excited electrons. Our results provide a promising approach for the effective harvesting of solar energy with plasmonic antenna-sensitizer complexes.
Collapse
Affiliation(s)
- Yurui Fang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P.R. China
- Department of Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | - Nan Gao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lei Shao
- Department of Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
3
|
Giri A, Walton SG, Tomko J, Bhatt N, Johnson MJ, Boris DR, Lu G, Caldwell JD, Prezhdo OV, Hopkins PE. Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces. ACS NANO 2023; 17:14253-14282. [PMID: 37459320 PMCID: PMC10416573 DOI: 10.1021/acsnano.3c02417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 08/09/2023]
Abstract
The coupled interactions among the fundamental carriers of charge, heat, and electromagnetic fields at interfaces and boundaries give rise to energetic processes that enable a wide array of technologies. The energy transduction among these coupled carriers results in thermal dissipation at these surfaces, often quantified by the thermal boundary resistance, thus driving the functionalities of the modern nanotechnologies that are continuing to provide transformational benefits in computing, communication, health care, clean energy, power recycling, sensing, and manufacturing, to name a few. It is the purpose of this Review to summarize recent works that have been reported on ultrafast and nanoscale energy transduction and heat transfer mechanisms across interfaces when different thermal carriers couple near or across interfaces. We review coupled heat transfer mechanisms at interfaces of solids, liquids, gasses, and plasmas that drive the resulting interfacial heat transfer and temperature gradients due to energy and momentum coupling among various combinations of electrons, vibrons, photons, polaritons (plasmon polaritons and phonon polaritons), and molecules. These interfacial thermal transport processes with coupled energy carriers involve relatively recent research, and thus, several opportunities exist to further develop these nascent fields, which we comment on throughout the course of this Review.
Collapse
Affiliation(s)
- Ashutosh Giri
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Scott G. Walton
- Plasma
Physics Division, Naval Research Laboratory, Washington, DC 22032, United States
| | - John Tomko
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Niraj Bhatt
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Michael J. Johnson
- Plasma
Physics Division, Naval Research Laboratory, Washington, DC 22032, United States
| | - David R. Boris
- Plasma
Physics Division, Naval Research Laboratory, Washington, DC 22032, United States
| | - Guanyu Lu
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua D. Caldwell
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Interdisciplinary
Materials Science, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Patrick E. Hopkins
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Materials Science and Engineering, University
of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
4
|
Li W, Xue T, Mora-Perez C, Prezhdo OV. Ab initio quantum dynamics of plasmonic charge carriers. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Wu X, Liu B, Frauenheim T, Tretiak S, Yam C, Zhang Y. Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics. J Chem Phys 2022; 157:214201. [DOI: 10.1063/5.0127435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born–Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show that the lifetime of the phonon-induced plasmon dephasing process is ∼10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
| | - Baopi Liu
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
| | - Thomas Frauenheim
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center of Integrated Nanotechnlogies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - ChiYung Yam
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
- Hong Kong Quantum AI Lab Limited, Hong Kong, China
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
6
|
Gieseking RLM. Plasmons: untangling the classical, experimental, and quantum mechanical definitions. MATERIALS HORIZONS 2022; 9:25-42. [PMID: 34608479 DOI: 10.1039/d1mh01163d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmons have been widely studied over the past several decades because of their ability to strongly absorb light and localize its electric field on the nanoscale, leading to applications in spectroscopy, biosensing, and solar energy storage. In a classical electrodynamics framework, a plasmon is defined as a collective, coherent oscillation of the conduction electrons of the material. In recent years, it has been shown experimentally that noble metal nanoclusters as small as a few nm can support plasmons. This work has led to numerous attempts to identify plasmons from a quantum mechanical perspective, including many overlapping and sometimes conflicting criteria for plasmons. Here, we shed light on the definitions of plasmons. We start with a brief overview of the well-established classical electrodynamics definition of a plasmon. We then turn to the experimental features used to determine whether a particular system is plasmonic, connecting the experimental results to the corresponding features of the classical electrodynamics description. The core of this article explains the many quantum mechanical criteria for plasmons. We explore the common features that these criteria share and explain how these features relate to the classical electrodynamics and experimental definitions. This comparison shows where more work is needed to expand and refine the quantum mechanical definitions of plasmons.
Collapse
Affiliation(s)
- Rebecca L M Gieseking
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, USA.
| |
Collapse
|
7
|
Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Dai Y, Bu Q, Sooriyagoda R, Tavadze P, Pavlic O, Lim T, Shen Y, Mamakhel A, Wang X, Li Y, Niemantsverdriet H, Iversen BB, Besenbacher F, Xie T, Lewis JP, Bristow AD, Lock N, Su R. Boosting Photocatalytic Hydrogen Production by Modulating Recombination Modes and Proton Adsorption Energy. J Phys Chem Lett 2019; 10:5381-5386. [PMID: 31448921 DOI: 10.1021/acs.jpclett.9b01460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solar-driven production of renewable energy (e.g., H2) has been investigated for decades. To date, the applications are limited by low efficiency due to rapid charge recombination (both radiative and nonradiative modes) and slow reaction rates. Tremendous efforts have been focused on reducing the radiative recombination and enhancing the interfacial charge transfer by engineering the geometric and electronic structure of the photocatalysts. However, fine-tuning of nonradiative recombination processes and optimization of target reaction paths still lack effective control. Here we show that minimizing the nonradiative relaxation and the adsorption energy of photogenerated surface-adsorbed hydrogen atoms are essential to achieve a longer lifetime of the charge carriers and a faster reaction rate, respectively. Such control results in a 16-fold enhancement in photocatalytic H2 evolution and a 15-fold increase in photocurrent of the crystalline g-C3N4 compared to that of the amorphous g-C3N4.
Collapse
Affiliation(s)
- Yitao Dai
- Interdisciplinary Nanoscience Centre (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
| | - Qijing Bu
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Rishmali Sooriyagoda
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506-6315 , United States
| | - Pedram Tavadze
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506-6315 , United States
| | - Olivia Pavlic
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506-6315 , United States
| | - Tingbin Lim
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
| | - Yanbin Shen
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
| | - Aref Mamakhel
- Centre for Materials Crystallography (CMC), Department of Chemistry and iNANO , Aarhus University , DK-8000 Aarhus C , Denmark
| | - Xiaoping Wang
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
| | - Yongwang Li
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
| | - Hans Niemantsverdriet
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
- SynCat@DIFFER , Syngaschem BV , 6336 HH Eindhoven , The Netherlands
| | - Bo B Iversen
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506-6315 , United States
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Centre (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
| | - Tengfeng Xie
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - James P Lewis
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506-6315 , United States
| | - Alan D Bristow
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506-6315 , United States
| | - Nina Lock
- Interdisciplinary Nanoscience Centre (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
- Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Centre (iNANO) and Dept. of Engineering , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
| | - Ren Su
- SynCat@Beijing , Synfuels China Technology Co. Ltd. , Leyuan South Street II, No.1 , Yanqi Economic Development Zone C#, Huairou District, Beijing 101407 , China
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| |
Collapse
|
9
|
Zhou X, Tokina MV, Tomko JA, Braun JL, Hopkins PE, Prezhdo OV. Thin Ti adhesion layer breaks bottleneck to hot hole relaxation in Au films. J Chem Phys 2019; 150:184701. [DOI: 10.1063/1.5096901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, People’s Republic of China
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Marina V. Tokina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - John A. Tomko
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jeffrey L. Braun
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Patrick E. Hopkins
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
10
|
He J, Fang WH, Long R, Prezhdo OV. Superoxide/Peroxide Chemistry Extends Charge Carriers’ Lifetime but Undermines Chemical Stability of CH3NH3PbI3 Exposed to Oxygen: Time-Domain ab Initio Analysis. J Am Chem Soc 2019; 141:5798-5807. [DOI: 10.1021/jacs.8b13392] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinlu He
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Panapitiya G, Avendaño-Franco G, Ren P, Wen X, Li Y, Lewis JP. Machine-Learning Prediction of CO Adsorption in Thiolated, Ag-Alloyed Au Nanoclusters. J Am Chem Soc 2018; 140:17508-17514. [PMID: 30406644 DOI: 10.1021/jacs.8b08800] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gihan Panapitiya
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, United States
| | - Guillermo Avendaño-Franco
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, United States
| | - Pengju Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Synfuels China Co. Ltd., Huairou, Beijing 101407, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Synfuels China Co. Ltd., Huairou, Beijing 101407, China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Synfuels China Co. Ltd., Huairou, Beijing 101407, China
| | - James P. Lewis
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, United States
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|
12
|
Yan L, Xu J, Wang F, Meng S. Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water. J Phys Chem Lett 2018; 9:63-69. [PMID: 29220189 DOI: 10.1021/acs.jpclett.7b02957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogen gas production from solar water splitting provides a renewable energy cycle to address the grand global energy challenge; however, its dynamics and fundamental mechanism remain elusive. We directly explore by first-principles the ultrafast electron-nuclear quantum dynamics on the time scale of ∼100 fs during water photosplitting on a plasmonic cluster embedded in liquid water. Water molecule splitting is assisted by rapid proton transport in liquid water in a Grotthuss-like mechanism. We identify that a plasmon-induced field enhancement effect dominates water splitting, while charge transfer from gold to the antibonding orbital of a water molecule also plays an important role. "Chain-reaction" like rapid H2 production is observed via the combination of two hydrogen atoms from different water molecules. These results provide a route toward a complete understanding of water photosplitting in the ultimate time and spatial limit.
Collapse
Affiliation(s)
- Lei Yan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Fangwei Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
- Collaborative Innovation Centre of Quantum Matter , Beijing 100190, China
| |
Collapse
|