1
|
Liu C, Manz J, Wen J, Yang Y. Schrödinger cat ground state representing two enantiomers of H3O2. J Chem Phys 2025; 162:174313. [PMID: 40331534 DOI: 10.1063/5.0256270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The vibronic ground state of HO-H-OH- represents axial Ra and Sa enantiomers, with equal probabilities. It can be prepared thermodynamically at low temperatures (4K). If the chirality is measured to be Ra, then wavefunction collapse induces periodic quantum stereo-mutation from Ra to Sa to Ra to Sa and so on. Similarly, the observation of Sa induces chirality flips from Sa to Ra to Sa to Ra and so on. The period of stereo-mutation is τ = 2.554 ps. The phenomenon is supported by the low energy barrier 174.6 hc cm-1 between the enantiomers and by the light masses of the hydrogen atoms, which interchange positions during stereo-mutation. Interchanges of heavier atoms and higher energy barriers would prohibit Schrödinger cat ground states. This is demonstrated for the counter example, isotopically substituted 12CDH13CH2-Si-12C13C. The results are obtained by means of quantum chemical calculations and quantum dynamics simulations.
Collapse
Affiliation(s)
- ChunMei Liu
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jian Wen
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Singh K, Lee KH, Peláez D, Bande A. Accelerating wavepacket propagation with machine learning. J Comput Chem 2024; 45:2360-2373. [PMID: 39031712 DOI: 10.1002/jcc.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024]
Abstract
In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.
Collapse
Affiliation(s)
- Kanishka Singh
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ka Hei Lee
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Daniel Peláez
- CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| | - Annika Bande
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Nikaido M, Mizuse K, Ohshima Y. Torsional Wave-Packet Dynamics in 2-Fluorobiphenyl Investigated by State-Selective Ionization-Detected Impulsive Stimulated Raman Spectroscopy. J Phys Chem A 2023. [PMID: 37257002 DOI: 10.1021/acs.jpca.3c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the creation and observation of vibrational wave packets pertinent to torsional motion in a biphenyl derivative in its electronic ground-state manifold. Adiabatically cooled molecular samples of 2-fluorobiphenyl were irradiated by intense nonresonant ultrashort laser pulses to drive impulsive stimulated Raman excitation of torsional motion. Spectral change due to the nonadiabatic vibrational excitation is probed in a state-selective manner using resonance-enhanced two-photon ionization through the S1 ← S0 electronic transition. The coherent nature of the excitation was exemplified by adopting irradiation with a pair of pump pulses: observed signals for excited torsional levels exhibit oscillatory variations against the mutual delay between the pump pulses due to wave-packet interference. By taking the Fourier transform of the time course of the signals, energy intervals among torsional levels with v = 0-3 were determined and utilized to calibrate a density functional theory (DFT)-calculated torsional potential-energy function. Time variation of populations in the excited torsional levels was assessed experimentally by measuring integrated intensities of the corresponding transitions while scanning the delay. Early time enhancement of the population (up to ∼2 ps) and gradual degradation of coherence (within ∼20 ps) appears. To explain the observed distinctive features, we developed a four-dimensional (4D) dynamical calculation in which one-dimensional (1D) quantum-mechanical propagation of the torsional motion was followed by solving the time-dependent Schrödinger equation, whereas three-dimensional (3D) molecular rotation was tracked by classical trajectory calculations. This hybrid approach enabled us to reproduce experimental results at a reasonable computational cost and provided a deeper insight into rotational effects on vibrational wave-packet dynamics.
Collapse
Affiliation(s)
- Makoto Nikaido
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro 152-8550, Japan
| | - Kenta Mizuse
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro 152-8550, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro 152-8550, Japan
| |
Collapse
|
4
|
Tikhonov DS, Blech A, Leibscher M, Greenman L, Schnell M, Koch CP. Pump-probe spectroscopy of chiral vibrational dynamics. SCIENCE ADVANCES 2022; 8:eade0311. [PMID: 36475788 PMCID: PMC9728962 DOI: 10.1126/sciadv.ade0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
A planar molecule may become chiral upon excitation of an out-of-plane vibration, changing its handedness during half a vibrational period. When exciting such a vibration in an ensemble of randomly oriented molecules with an infrared laser, half of the molecules will undergo the vibration phase-shifted by π compared to the other half, and no net chiral signal is observed. This symmetry can be broken by exciting the vibrational motion with a Raman transition in the presence of a static electric field. Subsequent ionization of the vibrating molecules by an extreme ultraviolet pulse probes the time-dependent net handedness via the photoelectron circular dichroism. Our proposal for pump-probe spectroscopy of molecular chirality, based on quantum-chemical theory and discussed for the example of the carbonyl chlorofluoride molecule, is feasible with current experimental technology.
Collapse
Affiliation(s)
- Denis S. Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Alexander Blech
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Monika Leibscher
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Loren Greenman
- Department of Physics, Kansas State University, 116 Cardwell Hall, 1228 N. 17th St., Manhattan, KS 66506-2601, USA
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Christiane P. Koch
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
5
|
Thomas EF, Henriksen NE. Breaking dynamic inversion symmetry in a racemic mixture using simple trains of laser pulses. J Chem Phys 2019; 150:024301. [PMID: 30646704 DOI: 10.1063/1.5063536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however, experimental implementation remains a challenge and has not yet been achieved. Here, we describe an experiment that can be considered an accessible intermediate step on the road towards achieving laser induced deracemization in a laboratory. Our approach consists of driving a racemic mixture of 3D oriented 3,5-difluoro-3', 5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules with a simple train of Gaussian pulses with alternating polarization axes. We use arguments related to the geometry of the field/molecule interaction to illustrate why this will increase the amplitude of the torsional oscillations between the phenyl rings while simultaneously breaking the inversion symmetry of the dynamics between the left- and right-handed enantiomeric forms, two crucial requirements for achieving deracemization. We verify our approach using numerical simulations and show that it leads to significant and experimentally measurable differences in the internal enantiomeric structures when detected by Coulomb explosion imaging.
Collapse
Affiliation(s)
- Esben F Thomas
- Department of Chemistry, Technical University of Denmark, Building 206, DK-2800 Kongens Lyngby, Denmark
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Building 206, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Dey D, Henriksen NE. Non-resonant vibrational excitation of HOD and selective bond breaking. J Chem Phys 2018; 148:234307. [PMID: 29935499 DOI: 10.1063/1.5029548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper reports a time-dependent quantum mechanical wave packet study for bond-selective excitation and dissociation of HOD into the H + OD and D + OH channels in the first absorption band. Prior to excitation, the HOD molecule is randomly oriented with respect to a linearly polarized laser field and accurate static dipole moment and polarizability surfaces are included in the interaction potential. Vibrational excitation is obtained with intense, non-resonant 800 nm few-cycle excitation using dynamic Stark effect/impulsive Raman scattering. Dissociation is accomplished by another ultrashort vacuum ultraviolet-laser excitation. A laser control scheme is designed with a train of simple, non-resonant laser pulses in order to enhance the selectivity between the fragmentation channels. The effect of the carrier-envelope-phase of the ultrashort laser pulses is also investigated.
Collapse
Affiliation(s)
- Diptesh Dey
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Steinbacher A, Hildenbrand H, Schott S, Buback J, Schmid M, Nuernberger P, Brixner T. Generating laser-pulse enantiomers. OPTICS EXPRESS 2017; 25:21735-21752. [PMID: 29041468 DOI: 10.1364/oe.25.021735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
We present an optical setup capable of mirroring an arbitrary, potentially time-varying, polarization state of an ultrashort laser pulse. The incident beam is split up in two and the polarization of one beam is mirrored by reflection off a mirror in normal incidence. Afterwards, both beams are recombined in time and space such that two collinear ultrashort laser pulses with mutually mirrored polarization, i.e., laser-pulse enantiomers, leave the setup. We employ the Jones formalism to describe the function of the setup and analyze the influence of alignment errors before describing the experimental implementation and alignment protocol. Since no wave plates are utilized, broadband pulses in a large wavelength range can be processed. In particular, we show that the setup outperforms broadband achromatic wave plates. Furthermore, since the two beams travel separately through the optical system they can be blocked independently. This opens the possibility for circular dichroism, ellipsometry, and anisotropy spectroscopy with shot-to-shot chopping and detection schemes as well as chiral coherent control applications.
Collapse
|