1
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Ajayi S, Asakereh I, Rezasoltani H, Davidson D, Khajehpour M. Does Urea Preferentially Interact with Amide Moieties or Nonpolar Sidechains? A Question Answered Through a Judicious Selection of Model Systems. Chemphyschem 2022; 24:e202200731. [PMID: 36478636 DOI: 10.1002/cphc.202200731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The transfer model suggests that urea unfolds proteins mainly by increasing the solubility of the amide backbone, probably through urea-induced increase in hydrogen bonding. Other studies suggest that urea addition increases the magnitude of solvent-solute van der Waals interactions, which increases the solubility of nonpolar sidechains. More recent analyses hypothesize that urea has a similar effect in increasing the solubility of backbone and sidechain groups. In this work, we compare the effects of urea addition on the solvation of amides and alkyl groups. At first, we study the effects of urea addition upon solvent hydrogen bonding acidity and basicity through the perturbation in the fluorescence spectrum of probes 1-AN and 1-DMAN. Our results demonstrate that the solvent's hydrogen bonding properties are minimally affected by urea addition. Subsequently, we show that urea addition does not perturb the intra-molecular hydrogen bonding in salicylic acid significantly. Finally, we investigate how urea preferentially interacts with amide and alkyl groups moieties in water by comparing the effects of urea addition upon the solubility of acetaminophen and 4-tertbutylphenol. We show that urea affects amide and t-butyl solubility (lowers the transfer free energy of both amide (backbone) and alkyl (sidechain) groups) in a similar fashion. In other words, preferential interaction of urea with both moieties contributes to protein denaturation.
Collapse
Affiliation(s)
- Simisola Ajayi
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Iman Asakereh
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Hanieh Rezasoltani
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - David Davidson
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Mazdak Khajehpour
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
3
|
Chen Q, Zhang J, Zhang Y, Kaplan DL, Wang Q. Protein-amylose/amylopectin molecular interactions during high-moisture extruded texturization toward plant-based meat substitutes applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
MAREKHA B, Hunger J. A single methyl group drastically changes urea's hydration dynamics. J Chem Phys 2022; 156:164504. [DOI: 10.1063/5.0085461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The amphiphilicity and denaturation efficiency of urea can be tuned via alkylation. Although the interaction of alkylureas with water and proteins has been studied in detail, the hydration of 1-methylurea has remained elusive, precluding the isolation of the effect of an individual methyl group. Here, we study water dynamics in the hydration shell of 1-methylurea (1-MU) using infrared absorption and ultrafast infrared spectroscopies. We find that 1-MU hardly affects the hydrogen-bond distribution of water as probed by the OD stretching vibration of HOD molecules. Polarization resolved infrared pump-probe experiments reveal that 1-MU slows down the rotational dynamics of up to 3 water molecules in its hydration shell. Comparison to earlier results for other alkylureas suggests that further alkylation does not necessarily slow down the rotational dynamics of additional water molecules. Two-dimensional infrared experiments show that 1-MU markedly slows down the hydrogen-bond fluctuation dynamics of water, yet similar to what has been found for urea and dimethylureas. Remarkably, (alkyl-) ureas that share a similar effect on water's hydrogen-bond fluctuation dynamics share a similar (modest) protein denaturation tendency. As such, not only the hydrophobicity but also hydration of hydrophilic fragments of alkylureas may be relevant to explain their function towards biomolecules.
Collapse
Affiliation(s)
- Bogdan MAREKHA
- Max-Planck-Institute for Medical Research Department of Biomolecular Mechanisms, Germany
| | - Johannes Hunger
- Molecular Spectroscopy, Max Planck Institute for Polymer Research, Germany
| |
Collapse
|
5
|
Stasiulewicz M, Panuszko A, Śmiechowski M, Bruździak P, Maszota P, Stangret J. Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Venkatraman RK, Baiz CR. Ultrafast Dynamics at the Lipid-Water Interface: DMSO Modulates H-Bond Lifetimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6502-6511. [PMID: 32423219 DOI: 10.1021/acs.langmuir.0c00870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dimethyl sulfoxide (DMSO) is a common cosolvent and cryopreservation agent used to freeze cells and tissues. DMSO alters the H-bond structure of water, but its interactions with biomolecules and, specifically, with biological interfaces remain poorly understood. Here we investigate the effects of DMSO on the H-bond dynamics at the lipid-water interface using a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations. Ester carbonyl absorption spectra show that DMSO dehydrates the interface, and simulations show that the area per lipid is decreased. Ultrafast 2D IR spectra measure the time scales of frequency fluctuations at the ester carbonyl positions located precisely between the hydrophobic and hydrophilic regions of the membrane. 2D IR measurements show that low DMSO concentrations (<10 mol %) induce ∼40% faster H-bond dynamics compared with pure water, whereas increased concentrations (>10-20 mol %) once again slow down the dynamics. This slow-fast-slow trend is described in terms of two different solvation regimes. Below 10 mol %, DMSO weakens the interfacial H bond, leading to faster "bulk-like" dynamics, whereas above 10 mol %, water molecules become "relatively immobilized" as the H-bond networks becoming disrupted by the H-bond donor/acceptor imbalance at the interface. These studies are an important step toward characterizing the environments around lipid membranes, which are essential to numerous biological processes.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Mondal S, Agam Y, Nandi R, Amdursky N. Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers. Chem Sci 2020; 11:3547-3556. [PMID: 34109027 PMCID: PMC8152808 DOI: 10.1039/c9sc04392f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 06/04/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Proteins are the main proton mediators in various biological proton circuits. Using proteins for the formation of long-range proton conductors is offering a bioinspired approach for proton conductive polymers. One of the main challenges in the field of proton conductors is to explore the local environment within the polymers, along with deciphering the conduction mechanism. Here, we show that the protonic conductivity across a protein-based biopolymer can be hindered using straightforward chemical modifications, targeting carboxylate- or amine-terminated residues of the protein, as well as exploring the effect of surface hydrophobicity on proton conduction. We further use the natural tryptophan residue as a local fluorescent probe for the inner local hydration state of the protein surface and its tendency to form hydrogen bonds with nearby water molecules, along with the dynamicity of the process. Our electrical and spectroscopic measurements of the different chemically-modified protein materials as well as the material at different water-aprotic solvent mixtures result in our fundamental understanding of the proton mediators within the material and gaining important insights on the proton conduction mechanism. Our biopolymer can be used as an attractive platform for the study of bio-related protonic circuits as well as a proton conducting biopolymer for various applications, such as protonic transistors, ionic transducers and fuel cells.
Collapse
Affiliation(s)
- Somen Mondal
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
8
|
Marekha BA, Hunger J. Hydrophobic pattern of alkylated ureas markedly affects water rotation and hydrogen bond dynamics in aqueous solution. Phys Chem Chem Phys 2019; 21:20672-20677. [PMID: 31508638 DOI: 10.1039/c9cp04108g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alkylated ureas are frequently used amphiphiles to mediate biomolecule water interactions, yet their hydrophobic substitution pattern critically affects their function. These differences can be traced back to their hydration, which is poorly understood. Here, we investigate subtle effects of the hydrophobic pattern of ureas on hydration dynamics using a combination of linear and non-linear infrared spectroscopies on the OD stretching vibration of HDO. Isomeric 1,3-dimethylurea (1,3-DMU), 1,1-dimethylurea (1,1-DMU) and 1-ethylurea (1-EU) exhibit very similar and rather weak modulation of the water hydrogen-bond strength distribution. Yet, only 1,3-DMU and 1,1-DMU enhance the hydrogen-bond heterogeneity and slow-down its fluctuation dynamics. In turn, rotational dynamics of water molecules, which is dominated by hydrogen bond switches, is significantly impeded in the presence of 1,3-DMU and only weakly by 1,1-DMU and 1-EU. These marked differences can be explained by both excluded volume effects in hydration and self-aggregation, which may be the key to their biotechnological function.
Collapse
Affiliation(s)
- Bogdan A Marekha
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|