1
|
Kornet MM, Müller TJJ. Recent Advances in Sequentially Pd-Catalyzed One-Pot Syntheses of Heterocycles. Molecules 2024; 29:5265. [PMID: 39598654 PMCID: PMC11596252 DOI: 10.3390/molecules29225265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Sequential Pd-catalyzed one-pot synthetic methodologies have emerged as a powerful and versatile approach in organic synthesis, enabling the construction of complex heterocyclic architectures with high efficiency, selectivity, and atom economy. This review discusses key advancements in multistep, sequentially Pd-catalyzed one-pot processes for accessing heterocyclic derivatives, focusing on classic reactions like Suzuki-Miyaura, Sonogashira, Heck, and hydroamination and extending to specialized techniques such as directed C-H activation. The concatenation of these steps has advanced the scope of one-pot strategies. A section is dedicated to exploring the cooperative use of palladium with other metals, particularly copper, ruthenium, and gold, which has broadened the range of accessible heterocyclic derivatives. Highlighted applications include the synthesis of biologically and pharmaceutically relevant compounds, such as tris(hetero)aryl systems, spiro-oxindoles, and indole derivatives. These one-pot strategies not only streamline synthesis but also align with green chemistry principles by minimizing purification steps and reducing waste and energy consumption. The review also addresses current challenges and limitations in these methodologies, offering insights into ongoing efforts to optimize reaction conditions and expand the applicability of sequential Pd-catalyzed processes.
Collapse
Affiliation(s)
- Maryna M. Kornet
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Laboratory for Biotechnology of Physiologically Active Substances, Faculty of Biology, Zaporizhzhia National University, 66 Universytetska Str., 69600 Zaporizhzhia, Ukraine
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Ahmad S, Eng J, Penfold TJ. Conformational Control of Donor-Acceptor Molecules Using Non-covalent Interactions. J Phys Chem A 2024; 128:8035-8044. [PMID: 39287185 PMCID: PMC11440601 DOI: 10.1021/acs.jpca.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Controlling the architecture of organic molecules is an important aspect in tuning the functional properties of components in organic electronics. For purely organic thermally activated delayed fluorescence (TADF) molecules, design is focused upon orthogonality orientated donor and acceptor units. In these systems, the rotational dynamics around the donor and acceptor bond has been shown to be critical for activating TADF; however, too much conformational freedom can increase the non-radiative rate, leading to a large energy dispersion of the emitting states and conformers, which do not exhibit TADF. To date, control of the motion around the D-A bond has focused upon steric hindrance. In this work, we computationally investigate eight proposed donor-acceptor molecules, exhibiting a B-N bond between the donor and acceptor. We compare the effect of steric hindrance and noncovalent interactions, achieved using oxygen (sulfur) boron heteroatom interactions, in exerting fine conformational control of the excited state dynamics. This work reveals the potential for judiciously chosen noncovalent interactions to strongly influence the functional properties of TADF emitters, including the accessible conformers and the energy dispersion associated with the charge transfer states.
Collapse
Affiliation(s)
- Shawana Ahmad
- Chemistry—School of Natural
and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1
7RU, U.K.
| | - Julien Eng
- Chemistry—School of Natural
and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1
7RU, U.K.
| | - Thomas J. Penfold
- Chemistry—School of Natural
and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1
7RU, U.K.
| |
Collapse
|
3
|
Froitzheim T, Kunze L, Grimme S, Herbert JM, Mewes JM. Benchmarking Charge-Transfer Excited States in TADF Emitters: ΔDFT Outperforms TD-DFT for Emission Energies. J Phys Chem A 2024; 128:6324-6335. [PMID: 39028862 DOI: 10.1021/acs.jpca.4c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Charge-transfer (CT) excited states are crucial to organic light-emitting diodes (OLEDs), particularly to those based on thermally activated delayed fluorescence (TADF). However, accurately modeling CT states remains challenging, even with modern implementations of (time-dependent) density functional theory [(TD-)DFT], especially in a dielectric environment. To identify shortcomings and improve the methodology, we previously established the STGABS27 benchmark set with highly accurate experimental references for the adiabatic energy gap between the lowest singlet and triplet excited states (ΔEST). Here, we diversify this set to the STGABS27-EMS benchmark by including experimental emission energies (Eem) and use this new set to (re)-evaluate various DFT-based approaches. Surprisingly, these tests demonstrate that a state-specific (un)restricted open-shell Kohn-Sham (U/ROKS) DFT coupled with a polarizable continuum model for perturbative state-specific nonequilibrium solvation (ptSS-PCM) provides exceptional accuracy for predicting Eem over a wide range of density functionals. In contrast, the main workhorse of the field, Tamm-Dancoff-approximated TD-DFT (TDA-DFT) paired with the same ptSS-PCM, is distinctly less accurate and strongly functional-dependent. More importantly, while TDA-DFT requires the choice of two very different density functionals for good performance on either ΔEST or Eem, the time-independent U/ROKS/PCM approaches deliver excellent accuracy for both quantities with a wide variety of functionals.
Collapse
Affiliation(s)
- Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Lukas Kunze
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- beeOLED GmbH, Niedersedlitzer Str. 75 C, 01257 Dresden, Germany
| |
Collapse
|
4
|
Kohlbecher R, Müller TJJ. A Rational Design of Electrochemically and Photophysically Tunable Triarylamine Luminophores by Consecutive (Pseudo-)Four-Component Syntheses. Chemistry 2024; 30:e202304119. [PMID: 38227421 DOI: 10.1002/chem.202304119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The concatenation of Suzuki coupling and two-fold Buchwald-Hartwig amination in sequentially palladium-catalyzed consecutive multicomponent syntheses paves a concise, convergent route to diversely functionalized para-biaryl-substituted triarylamines (p-bTAAs) from simple, readily available starting materials. An extensive library of p-bTAAs permits comprehensive investigations of their electronic properties by absorption and emission spectroscopy, cyclic voltammetry, and quantum chemical calculations, which contribute to a deep understanding of their electronic structure. The synthesized p-bTAAs exhibit tunable fluorescence from blue to yellow upon photonic excitation with quantum yields up to 98 % in solution and 92 % in the solid state. Furthermore, a pronounced bathochromic shift of the emission maxima by increasing solvent polarity indicates positive emission solvatochromism. Aggregation-induced enhanced emission (AIEE) in dimethyl sulfoxide (DMSO)/water mixtures causes the formation of intensely blue fluorescent aggregates. Cyclic voltammetry shows reversible first and second oxidations of p-bTAAs at low potentials, which are tunable by variation of the introduced para substituents. 3D Hammett plots resulting from the correlation of oxidation potentials and emission maxima with electronic substituent parameters emphasize the rational design of tailored p-bTAAs with predictable electrochemical and photophysical properties.
Collapse
Affiliation(s)
- Regina Kohlbecher
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Choy PY, Tse MH, Kwong FY. Recent Expedition in Pd- and Rh-Catalyzed C (Ar) -B Bond Formations and Their Applications in Modern Organic Syntheses. Chem Asian J 2023; 18:e202300649. [PMID: 37655883 DOI: 10.1002/asia.202300649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Transition metal-catalyzed borylation has emerged as a powerful and versatile strategy for synthesizing organoboron compounds. These compounds have found widespread applications in various aspects, including organic synthesis, materials science, and medicinal chemistry. This review provides a concise summary of the recent advances in palladium- and rhodium-catalyzed borylation from 2013 to 2023. The review covers the representative examples of catalysts, substrates scope and reaction conditions, with particular emphasis on the development of catalyst systems, such as phosphine ligands, NHC-carbene, and more. The diverse array of borylative products obtained for further applications in Suzuki-Miyaura coupling, and other transformations, are also discussed. Future directions in this rapidly evolving field, with the goal of designing more efficient, selective borylation methodologies are highlighted, too.
Collapse
Affiliation(s)
- Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute, No. 10. Second Yuexing Road, Shenzhen, 518507, P. R. China
| | - Man Ho Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute, No. 10. Second Yuexing Road, Shenzhen, 518507, P. R. China
| |
Collapse
|
6
|
Yersin H, Czerwieniec R, Monkowius U, Ramazanov R, Valiev R, Shafikov MZ, Kwok WM, Ma C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Masuda Borylation–Suzuki Coupling (MBSC) Sequence: A One-Pot Process to Access Complex (hetero)Biaryls. Catalysts 2023. [DOI: 10.3390/catal13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The direct formation of (hetero)biaryls from readily available (hetero)aryl halides under mild reaction conditions can be efficiently achieved through the Masuda borylation–Suzuki coupling (MBSC) sequence. The MBSC sequence catenates Pd-catalyzed Masuda borylation and Suzuki coupling into a one-pot process, giving access to diverse symmetrically and unsymmetrically substituted scaffolds. (Hetero)biaryls are ubiquitous structural motifs that appear in natural products, pharmaceutically relevant scaffolds, functional dyes, and several other structures. This review summarizes the development of the MBSC sequence and its improvements over the past two decades.
Collapse
|
8
|
Haselbach W, Kaminski JM, Kloeters LN, Müller TJJ, Weingart O, Marian CM, Gilch P, Nogueira de Faria BE. A Thermally Activated Delayed Fluorescence Emitter Investigated by Time-Resolved Near-Infrared Spectroscopy. Chemistry 2023; 29:e202202809. [PMID: 36214291 PMCID: PMC10098753 DOI: 10.1002/chem.202202809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Emitters for organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) require small singlet (S1 )-triplet (T1 ) energy gaps as well as fast intersystem crossing (ISC) transitions. These transitions can be mediated by vibronic mixing with higher excited states Sn and Tn (n=2, 3, 4, …). For a prototypical TADF emitter consisting of a triarylamine and a dicyanobenzene moiety (TAA-DCN) it is shown that these higher states can be located energetically by time-resolved near-infrared (NIR) spectroscopy.
Collapse
Affiliation(s)
- Wiebke Haselbach
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jeremy M Kaminski
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Laura N Kloeters
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christel M Marian
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Peter Gilch
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Barbara E Nogueira de Faria
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Wang Y, Guo Z, Gao Y, Tian Y, Deng Y, Ma X, Yang W. Tuning Hybridized Local and Charge-Transfer Mixing for Efficient Hot-Exciton Emission with Improved Color Purity. J Phys Chem Lett 2022; 13:6664-6673. [PMID: 35839081 DOI: 10.1021/acs.jpclett.2c01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delayed fluorescence (DF) emitters with high color purity are of high interest for applications in high-resolution displays. However, the charge transfer required by high emitting efficiency usually conflicts with the expected color purity. In this work, we investigated the S1/S0 conformational relaxation, spin-orbital coupling (SOC), and vibronic coupling of hot-exciton emitters while hybrid local and charge transfer (HLCT) state tuning was achieved by a structural meta-effect. The meta-linkage leads to suppressed S1/S0 conformational relaxation and weakened vibronic coupling, while the unsacrificed emitting efficiency is largely ensured by multiple rISC channels (Tn → Sm) with thermally accessible triplet-singlet energy gap (ΔEST) and effective SOC. We demonstrated that the unique excited-state mechanism provides opportunities to improve the emitting color purity of hot-exciton emitters without sacrificing emitting efficiency by HLCT state tuning with simple chemical structural modification, for which hot-exciton emitters might play a more important role for high-resolution organic light-emitting diode displays.
Collapse
Affiliation(s)
- Yaxin Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Yiran Tian
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Yingyi Deng
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
10
|
Wiefermann J, Schmeinck P, Ganter C, Müller TJJ. Highly Deep‐Blue Luminescent Twisted Diphenylamino Terphenyl Emitters by Bromine‐Lithium Exchange Borylation‐Suzuki Sequence. Chemistry 2022; 28:e202200576. [PMID: 35298846 PMCID: PMC9322521 DOI: 10.1002/chem.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Four novel intensively blue luminescent chromophores were readily synthesized by bromine‐lithium exchange borylation‐Suzuki (BLEBS) sequence in moderate to good yields. Their electronic properties were studied by absorption and emission spectroscopy and quantum chemical calculations revealing deep‐blue emission in solution as well as in the solid state and upon embedding into a PMMA (polymethylmethacrylate) matrix with small FWHM (full width at half maximum) values and CIE y values smaller than 0.1. Moreover, high photoluminescence quantum yields (PLQY), partially close to unity, are found.
Collapse
Affiliation(s)
- Julia Wiefermann
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| | - Philipp Schmeinck
- Institut für Anorganische Chemie und Strukturchemie I Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Christian Ganter
- Institut für Anorganische Chemie und Strukturchemie I Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| |
Collapse
|
11
|
Cheng G, Zhou D, Monkowius U, Yersin H. Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. MICROMACHINES 2021; 12:1500. [PMID: 34945348 PMCID: PMC8703954 DOI: 10.3390/mi12121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Luminescent copper(I) complexes showing thermally activated delayed fluorescence (TADF) have developed to attractive emitter materials for organic light emitting diodes (OLEDs). Here, we study the brightly luminescent dimer Cu2Cl2(P∩N)2 (P∩N = diphenylphosphanyl-6-methyl-pyridine), which shows both TADF and phosphorescence at ambient temperature. A solution-processed OLED with a device structure ITO/PEDOT:PSS/PYD2: Cu2Cl2(P∩N)2/DPEPO (10 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm) shows warm white emission with moderate external quantum efficiency (EQE). Methods for EQE increase strategies are discussed.
Collapse
Affiliation(s)
- Gang Cheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, China
| | - Dongling Zhou
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Hartmut Yersin
- Institut für Physikalische Chemie, Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
12
|
Kunze L, Hansen A, Grimme S, Mewes JM. PCM-ROKS for the Description of Charge-Transfer States in Solution: Singlet-Triplet Gaps with Chemical Accuracy from Open-Shell Kohn-Sham Reaction-Field Calculations. J Phys Chem Lett 2021; 12:8470-8480. [PMID: 34449230 DOI: 10.1021/acs.jpclett.1c02299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adiabatic energy gap between the lowest singlet and triplet excited states ΔEST is a central property of thermally activated delayed fluorescence (TADF) emitters. Since these states are dominated by a charge-transfer character, causing strong orbital-relaxation and environmental effects, an accurate prediction of ΔEST is very challenging, even with modern quantum-chemical excited-state methods. Addressing this major challenge, we present an approach that combines spin-unrestricted (UKS) and restricted open-shell Kohn-Sham (ROKS) self-consistent field calculations with a polarizable-continuum model and range-separated hybrid functionals. Tests on a new representative benchmark set of 27 TADF emitters with accurately known ΔEST values termed STGABS27 reveal a robust and unprecedented performance with a mean absolute deviation of only 0.025 eV (∼0.5 kcal/mol) and few deviations greater than 0.05 eV (∼1 kcal/mol), even in electronically challenging cases. Requiring only two geometry optimizations per molecule at the ROKS/UKS level in a compact double-ζ basis, the approach is computationally efficient and can routinely be applied to molecules with more than 100 atoms.
Collapse
Affiliation(s)
- Lukas Kunze
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| |
Collapse
|
13
|
P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021; 26:molecules26113415. [PMID: 34200044 PMCID: PMC8200198 DOI: 10.3390/molecules26113415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.
Collapse
|
14
|
Avellanal‐Zaballa E, Prieto‐Castañeda A, García‐Garrido F, Agarrabeitia AR, Rebollar E, Bañuelos J, García‐Moreno I, Ortiz MJ. Red/NIR Thermally Activated Delayed Fluorescence from Aza‐BODIPYs. Chemistry 2020; 26:16080-16088. [DOI: 10.1002/chem.202002916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Esther Rebollar
- Dpto, de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada Instituto Química-Física “Rocasolano”, IQFR-CSIC Serrano 119 28006 Madrid Spain
| | - Jorge Bañuelos
- Dpto. Química Física Universidad del País Vasco (UPV/EHU) Aptdo 644 48080 Bilbao Spain
| | - Inmaculada García‐Moreno
- Dpto, de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada Instituto Química-Física “Rocasolano”, IQFR-CSIC Serrano 119 28006 Madrid Spain
| | - María J. Ortiz
- Dpto. Química Orgánica Universidad Complutense Ciudad Universitaria s/n 28006 Madrid Spain
| |
Collapse
|
15
|
Jin R, Xin J. Rational Design of π-Conjugated Tricoordinated Organoboron Derivatives With Thermally Activated Delayed Fluorescent Properties for Application in Organic Light-Emitting Diodes. Front Chem 2020; 8:577834. [PMID: 33195067 PMCID: PMC7554541 DOI: 10.3389/fchem.2020.577834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
A series of donor–acceptor (D–A) tricoordinated organoboron derivatives (1–10) have been systematically investigated for thermally activated delayed fluorescent (TADF)-based organic light-emitting diode (OLED) materials. The calculated results show that the designed molecules exhibit small singlet-triplet energy gap (ΔEST) values. Density functional theory (DFT) analysis indicated that the designed molecules display an efficient separation between donor and acceptor fragments because of a small overlap between donor and acceptor fragments on HOMOs and LUMOs. Furthermore, the delayed fluorescence emission color can be tuned effectively by introduction of different polycyclic aromatic fragments in parent molecule 1. The calculated results show that molecules 2, 3, and 4 possess more significant Stokes shifts and red emission with small ΔEST values. Nevertheless, other molecules exhibit green (1, 7, and 8), light green (6 and 10), and blue (5 and 9) emissions. Meanwhile, they are potential ambipolar charge transport materials except that 4 and 10 can serve as electron and hole transport materials only, respectively. Therefore, we proposed a rational way for the design of efficient TADF materials as well as charge transport materials for OLEDs simultaneously.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
- *Correspondence: Ruifa Jin
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
| |
Collapse
|
16
|
Narsaria AK, Rauch F, Krebs J, Endres P, Friedrich A, Krummenacher I, Braunschweig H, Finze M, Nitsch J, Bickelhaupt FM, Marder TB. Computationally Guided Molecular Design to Minimize the LE/CT Gap in D-π-A Fluorinated Triarylboranes for Efficient TADF via D and π-Bridge Tuning. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002064. [PMID: 32774198 PMCID: PMC7405949 DOI: 10.1002/adfm.202002064] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 05/16/2023]
Abstract
In this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D-π-B(FXyl)2 compounds 1-5 were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film, and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data. Furthermore, a simple structure-property relationship is presented on the basis of the molecular fragment orbitals of the donor and the π-bridge, which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters.
Collapse
Affiliation(s)
- Ayush K. Narsaria
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083AmsterdamNL‐1081 HVThe Netherlands
| | - Florian Rauch
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Johannes Krebs
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Peter Endres
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Alexandra Friedrich
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Maik Finze
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Jörn Nitsch
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083AmsterdamNL‐1081 HVThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 135NijmegenNL‐6525 AJThe Netherlands
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| |
Collapse
|
17
|
Balijapalli U, Tanaka M, Auffray M, Chan CY, Lee YT, Tsuchiya Y, Nakanotani H, Adachi C. Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9498-9506. [PMID: 32020791 DOI: 10.1021/acsami.9b20020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a series of pentacarbazolyl-benzonitrile derivatives such as 2,4,6-tri(9H-carbazol-9-yl)-3,5-bis(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (mPyBN), 3,5-bis(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)benzonitrile (pCF3BN), 2,4,6-tri(9H-carbazol-9-yl)-3-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-5-(3,6-diphenyl-9H-carbazol-9-yl)benzonitrile (PyPhBN), 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (PyCF3BN), and 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,6-di(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-4-(9H-pyrido[3,4-b]indol-9-yl)benzonitrile (CbPyCF3BN) in which some of the carbazoles are substituted with modified 3,5-diphenyl carbazoles, exhibiting thermally activated delayed fluorescence (TADF) properties. These emitters comprised two, three, and four different types of donors, capable of bluish-green emission of around 480 nm with relatively high photoluminescence quantum yields over 90% in solution. Emitters, namely, PyPhBN, PyCF3BN, and CbPyCF3BN, composed of three and four different types of donors endowed a rather short delayed lifetime (τd) of 4.25, 5.01, and 3.65 μs in their film state, respectively. Bluish-green organic light-emitting diodes based on PyPhBN, PyCF3BN, and CbPyCF3BN exhibit a high external quantum efficiency of 20.6, 19.5, and 19.6%, respectively, with unsurpassed efficiency roll-off behavior. These results indicate that the TADF properties of multidonor type molecules can be manipulated by controlling the types and number of electron donor units.
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| |
Collapse
|
18
|
Ravindra M, Mahadevan K, Basavaraj R, Darshan G, Sharma S, Raju M, Vijayakumar G, Manjappa KB, Yang DY, Nagabhushana H. New design of highly sensitive AIE based fluorescent imidazole derivatives: Probing of sweat pores and anti-counterfeiting applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:564-574. [DOI: 10.1016/j.msec.2019.03.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/13/2019] [Accepted: 03/24/2019] [Indexed: 01/11/2023]
|
19
|
Huang T, Liu D, Jiang J, Jiang W. Quinoxaline and Pyrido[x,y-b]pyrazine-Based Emitters: Tuning Normal Fluorescence to Thermally Activated Delayed Fluorescence and Emitting Color over the Entire Visible-Light Range. Chemistry 2019; 25:10926-10937. [PMID: 31210382 DOI: 10.1002/chem.201902116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 02/02/2023]
Abstract
Quinoxaline (Q), pyrido[2,3-b]pyrazine (PP) and pyrido[3,4-b]pyrazine (iPP) are used as electron acceptors (A) to design a series of D-π-A-type light-emitting materials with different donor (D) groups. By adjusting the molecular torsion angles through changing D from carbazole (Cz) to 10-dimethylacridine (DMAC) or 10H-phenoxazine (PXZ) for a fixed A, the luminescence is tuned from normal fluorescence to thermally activated delayed fluorescence (TADF). By gradually enhancing the intramolecular charge-transfer extent through combining different D and A, the emission color is continuously and regularly tuned from pure blue to orange-red. Organic light-emitting diodes (OLEDs) containing these compounds as doped emitters exhibit bright electroluminescence with emission colors covering the entire visible-light range. An external quantum efficiency (ηext ) of 1.2 % with excellent color coordinates of (0.16, 0.07) is obtained for the pure-blue OLED of Q-Cz. High ηext values of 12.9 (35.9) to 16.7 % (51.9 cd A-1 ) are realized in the green, yellow, and orange-red TADF OLEDs. All PP- and iPP-based TADF emitters exhibit superior efficiency stabilities to that of analogues of Q. This provides a practical strategy to tune the emission color of Q, PP, and iPP derivatives with the same molecular skeletons over the entire visible-light range.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China
| | - Di Liu
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China
| | - Jingyang Jiang
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China
| | - Wenfeng Jiang
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China
| |
Collapse
|
20
|
Yang Z, Mao Z, Xu C, Chen X, Zhao J, Yang Z, Zhang Y, Wu W, Jiao S, Liu Y, Aldred MP, Chi Z. A sterically hindered asymmetric D-A-D' thermally activated delayed fluorescence emitter for highly efficient non-doped organic light-emitting diodes. Chem Sci 2019; 10:8129-8134. [PMID: 31857879 PMCID: PMC6836986 DOI: 10.1039/c9sc01686d] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
An ortho-substituent design strategy promoting steric hindrance has afforded excellent AIE-TADF emitters, and high-efficiency TADF-OLEDs have been subsequently demonstrated.
Thermally activated delayed fluorescence (TADF) materials have opened a new chapter for high-efficiency and low-cost organic light-emitting diodes (OLEDs). Herein, we describe a novel and effective design strategy for TADF emitters which includes introducing a carbazole donor unit at the ortho-position, at which the donor and acceptor groups are spatially in close proximity to guarantee the existence of intramolecular electrostatic attraction and through-space charge transfer, leading to reduced structural vibrations, suppressed non-radiative decay and rapid radiative decay to avoid excited state energy loss. As a result, a green TADF emitter (2Cz-DPS) showing high solid-state photoluminescence quantum efficiency (91.9%) and excellent OLED performance was produced. Theoretical simulations reveal that the non-adiabatic coupling accelerates the reverse intersystem crossing of 2Cz-DPS, resulting in a state-of-the-art non-doped OLED with an extremely high external quantum efficiency of 28.7%.
Collapse
Affiliation(s)
- Zhan Yang
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - Zhu Mao
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment , Ministry of Education , School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , PR China
| | - Xiaojie Chen
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - Juan Zhao
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - Zhiyong Yang
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - Yi Zhang
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - William Wu
- R&D Center , Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. , Shenzhen 518132 , China
| | - Shibo Jiao
- R&D Center , Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. , Shenzhen 518132 , China
| | - Yang Liu
- R&D Center , Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. , Shenzhen 518132 , China
| | - Matthew P Aldred
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| | - Zhenguo Chi
- PCFM Lab , GDHPPC Lab , Guangdong Engineering Technology , Research Center for High-performance Organic and Polymer Photo-electric, Functional Films , State Key Laboratory of OEMT , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ; ;
| |
Collapse
|
21
|
Liang B, Wang J, Cheng Z, Wei J, Wang Y. Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W Power Efficiency. J Phys Chem Lett 2019; 10:2811-2816. [PMID: 31082247 DOI: 10.1021/acs.jpclett.9b01140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Benzimidazole-triazine-based electron acceptor PIM-TRZ with high triplet exited-state energy and strong electron-transport ability was newly developed. A series of highly efficient exciplex emitters have been fabricated. The TAPC:PIM-TRZ (TAPC: di-[4-( N, N-ditoly amino)-phenyl]cyclohexane) film shows a high photoluminescence (PL) quantum yields (PLQY, Φf) of 93.4%, and the device based on TAPC:PIM-TRZ exhibits a low turn-on voltage of 2.3 V, high maximum efficiency of 71.2 cd A-1 (current efficiency, CE), 97.3 lm W-1 (power efficiency, PE), and 21.7% (external quantum efficiency, EQE), as well as a high EQE of 16.2% at a luminance of 5000 cd m-2. The device displays the highest efficiency among reported organic light-emitting devices with an exciplex film as the emitting layer. Furthermore, a green device is also fabricated with a TAPC:PIM-TRZ cohost using C545T (C545T: (10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1 H,5 H,11 H-benzopyrano[6,7-8- I, j]quinolizin-11-one)) as the dopant, and the highest CE, PE, and EQE are 68.3 cd A-1, 86.6 lm W-1, and 20.2%, respectively.
Collapse
Affiliation(s)
- Baoyan Liang
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Jiaxuan Wang
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Zong Cheng
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Jinbei Wei
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
22
|
Liu J, Zhou K, Wang D, Deng C, Duan K, Ai Q, Zhang Q. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate. Front Chem 2019; 7:312. [PMID: 31165054 PMCID: PMC6536661 DOI: 10.3389/fchem.2019.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023] Open
Abstract
Metal-free thermally activated delayed fluorescence (TADF) emitters have emerged as promising candidate materials for highly efficient and low-cost organic light-emitting diodes (OLEDs). Here, a novel acceptor 2-cyanopyrazine is selected for the construction of blue TADF molecules via computer-assisted molecular design. Both theoretical prediction and experimental photophysical data indicate a small S1-T1 energy gap (ΔEST) and a relative large fluorescence rate (kF) in an o-phenylene-bridged 2-cyanopyrazine/3,6-di-tert-butylcarbazole compound (TCzPZCN). The kF value of 3.7 × 107 s−1 observed in a TCzPZCN doped film is among the highest in the TADF emitters with a ΔEST smaller than 0.1 eV. Blue TADF emission is observed in a TCzPZCN doped film with a short TADF lifetime of 1.9 μs. The OLEDs using TCzPZCN as emitter exhibit a maximum external quantum efficiency (EQE) of 7.6% with low-efficiency roll-off. A sky-blue device containing a derivative of TCzPZCN achieves an improved EQE maximum of 12.2% by suppressing the non-radiative decay at T1.
Collapse
Affiliation(s)
- Junyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Keren Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qi Ai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Saigo M, Miyata K, Tanaka S, Nakanotani H, Adachi C, Onda K. Suppression of Structural Change upon S 1-T 1 Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives. J Phys Chem Lett 2019; 10:2475-2480. [PMID: 30973013 DOI: 10.1021/acs.jpclett.9b00810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermally activated delayed fluorescence (TADF) molecules are gathering attention for their potential to boost the efficiency of organic light-emitting diodes without precious metals. Minimizing the energy difference between the S1 and T1 states (Δ EST) is a fundamental strategy to accelerate reverse intersystem crossing (RISC). However, the lack of microscopic understanding of the process prevents adequate design strategies for efficient TADF materials. Here, we focused on four carbazole-benzonitrile (Cz-BN) derivatives that possess identical Δ EST but distinct TADF activities. We systematically compared their geometrical dynamics upon photoexcitation using time-resolved infrared (TR-IR) vibrational spectroscopy in conjunction with quantum chemical calculations. We found that the most TADF-active molecule, 4CzBN, shows little structural change after photoexcitation, while the TADF-inactive molecules show relatively large deformation upon S1-T1 conversion. This implies that the suppression of structural deformation is critical for minimizing the activation energy barrier for RISC in cases of the Cz-BN derivatives.
Collapse
Affiliation(s)
- Masaki Saigo
- Department of Chemistry , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Kiyoshi Miyata
- Department of Chemistry , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Sei'ichi Tanaka
- Department of Chemistry , Tokyo Institute of Technology , O-okayama 2-12-1, H-61 , Meguro-ku , Tokyo 152-8550 , Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Ken Onda
- Department of Chemistry , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| |
Collapse
|
24
|
Artem'ev AV, Shafikov MZ, Schinabeck A, Antonova OV, Berezin AS, Bagryanskaya IY, Plusnin PE, Yersin H. Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(i) complexes: strong solvation-induced emission enhancement. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01069f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Remarkable solvation-induced emission enhancement is discovered on a new Ag(i) complex showing sky-blue thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Alexander V. Artem'ev
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University (National Research University)
| | - Marsel Z. Shafikov
- Universität Regensburg
- Institut für Physikalische Chemie
- 93053 Regensburg
- Germany
- Ural Federal University
| | | | - Olga V. Antonova
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University (National Research University)
| | - Irina Yu. Bagryanskaya
- Novosibirsk State University (National Research University)
- Novosibirsk 630090
- Russian Federation
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of Russian Academy of Sciences
| | - Pavel E. Plusnin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University (National Research University)
| | - Hartmut Yersin
- Universität Regensburg
- Institut für Physikalische Chemie
- 93053 Regensburg
- Germany
| |
Collapse
|
25
|
Schinabeck A, Rau N, Klein M, Sundermeyer J, Yersin H. Deep blue emitting Cu(i) tripod complexes. Design of high quantum yield materials showing TADF-assisted phosphorescence. Dalton Trans 2018; 47:17067-17076. [PMID: 30465052 DOI: 10.1039/c8dt04093a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a previous investigation, it was shown that [Cu(tpym)(PPh3)]PF61 with tpym = tris(2-pyridyl)methane represents a deep blue emitter (λmax = 466 nm) though with a low emission quantum yield ΦPL if doped in a polymer (7%) or dissolved in a fluid solvent (≪1%). In this study, we present new tripod compounds with sterically demanding ligands: [Cu(tpym)(P(o-tol)3)]PF62 and [Cu(tpym)(P(o-butyl-ph)3)]PF63 with P(o-tol)3 = tris(ortho-tolyl)phosphine and P(o-butyl-ph)3 = tris(ortho-n-butylphenyl)phosphine. These compounds show high emission quantum yields even in a fluid solution (dichloromethane) reaching a benchmark value for 3 of ΦPL = 76%. This becomes possible due to the specific design of rigidifying the complexes. Importantly, the deep blue emission color is maintained or even further blue shifted to λmax = 452 nm (compound 3 powder). Compound 2 is characterized photophysically in detail. In particular, it is shown that the lowest excited triplet state T1 experiences very efficient spin-orbit coupling (SOC). Accordingly, the phosphorescence decay rate is as large as 5 × 104 s-1 (20 μs) belonging to the fastest T1→ S0 transition values (shortest decay times) reported so far. Investigations down to T = 1.5 K reveal a large total zero-field splitting (ZFS) of 7 cm-1 (0.9 meV). Although thermally activated delayed fluorescence (TADF) grows in at T≥ 160 K, the phosphorescence of 2 still dominates (60%) over TADF (40%) at ambient temperature. Thus, the compound represents a singlet harvesting-plus-triplet harvesting material, if applied in an OLED.
Collapse
Affiliation(s)
- Alexander Schinabeck
- Universität Regensburg, Institut für Physikalische Chemie, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Nicholas Rau
- Philipps-Universität Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften WZMW, Hans Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Marius Klein
- Philipps-Universität Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften WZMW, Hans Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Jörg Sundermeyer
- Philipps-Universität Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften WZMW, Hans Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Hartmut Yersin
- Universität Regensburg, Institut für Physikalische Chemie, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|