1
|
Csehi A, Szabó K, Vibók Á, Cederbaum LS, Halász GJ. Controlling Molecular Dynamics by Exciting Atoms in a Cavity. PHYSICAL REVIEW LETTERS 2025; 134:188001. [PMID: 40408666 DOI: 10.1103/physrevlett.134.188001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/06/2024] [Accepted: 04/04/2025] [Indexed: 05/25/2025]
Abstract
Placing an atom and a molecule in a cavity opens the door to initialize molecular dynamics by exciting a level of the atom. This approach enlarges the range of choosing the light source to trigger molecular dynamics substantially. The interplay of the atomic, molecular, and photonic populations gives rise to rich dynamics. The cavity photon plays the role of a mediator between the atom and the molecule and it is found that the photonic population is rather low throughout and its evolution follows that of the molecule. Cavities are known to be subject to losses. In spite of the losses it is demonstrated that the presence of the atom gives rise to a long-lived dynamics that should be of relevance for experimental investigations. The presence of more atoms and molecules is expected to further enrich the dynamics.
Collapse
Affiliation(s)
- András Csehi
- University of Debrecen, Department of Theoretical Physics, Faculty of Science and Technology, H-4002 Debrecen, Post Office Box 400, Hungary
| | - Krisztián Szabó
- University of Debrecen, Department of Theoretical Physics, Faculty of Science and Technology, H-4002 Debrecen, Post Office Box 400, Hungary
| | - Ágnes Vibók
- University of Debrecen, Department of Theoretical Physics, Faculty of Science and Technology, H-4002 Debrecen, Post Office Box 400, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., H-6720 Szeged, Dugonics tér 13, Hungary
| | - Lorenz S Cederbaum
- Heidelberg University, Theoretical Chemistry, Institute of Physical Chemistry, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Gábor J Halász
- University of Debrecen, Department of Information Technology, Faculty of Informatics, H-4002 Debrecen, Post Office Box 400, Hungary
| |
Collapse
|
2
|
Fábri C, Halász GJ, Hofierka J, Cederbaum LS, Vibók Á. Impact of Dipole Self-Energy on Cavity-Induced Nonadiabatic Dynamics. J Chem Theory Comput 2025; 21:575-589. [PMID: 39772522 DOI: 10.1021/acs.jctc.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to ensure gauge invariance. The aim of this work is twofold. First, we introduce a method, which has its own merits and complements existing methods, to compute the DSE. Second, we study the impact of the DSE on cavity-induced nonadiabatic dynamics in a realistic system. For that purpose, various matrix elements of the DSE are computed as functions of the nuclear coordinates and the dynamics of the system after laser excitation is investigated. The cavity is known to induce conical intersections between polaritons, which gives rise to substantial nonadiabatic effects. The DSE is shown to slightly affect these light-induced conical intersections and, in particular, break their symmetry.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Jaroslav Hofierka
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg D-69120, Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg D-69120, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, Szeged H-6720, Hungary
| |
Collapse
|
3
|
Szidarovszky T. Ab initio study on the dynamics and spectroscopy of collective rovibrational polaritons. J Chem Phys 2025; 162:034117. [PMID: 39817577 DOI: 10.1063/5.0244977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems. Collective effects, arising due to the cavity-mediated interaction between molecules, are identified in energy level shifts, in intensity borrowing effects in the absorption spectra, and in the intermolecular energy transfer occurring during Hermitian or non-Hermitian time propagation.
Collapse
Affiliation(s)
- Tamás Szidarovszky
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Liu Y, Meng JQ, Sun Z, Shu CC. Unveiling Ultrafast-Weak-Field Coherent Control of Indirect Dissociation Reactions. J Phys Chem Lett 2024; 15:8393-8401. [PMID: 39115552 DOI: 10.1021/acs.jpclett.4c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coherent control of molecular photodissociation through one-photon transitions has become a topic of interest in physical chemistry. Previous studies have shown that modulating the spectral phase of a single ultrafast laser pulse while keeping its spectral amplitude constant does not affect the dissociation yield of reactions originating from a pure eigenstate of the ground electronic state. Here, we explore the indirect photodissociation reaction of NaI molecules using theoretical and numerical methods. Our findings show that, in contrast to the outcomes achieved with negatively chirped pulses, time-dependent population of the eigenstates of the excited adiabatic potential induced by positively chirped laser pulses, acting as intermediates in the reaction, cannot be periodically restored to that caused by the unchirped pulse. This gives rise to an intriguing phenomenon: the sign of the pulse's chirp rate influences the distribution of dissociation fragments in coordinate and momentum space over extended periods. This work highlights the potential of using spectral-phase modulated pulses to manipulate indirect photodissociation reactions, offering a way to modify the transient photofragment distributions by controlling reaction intermediates.
Collapse
Affiliation(s)
- Yong Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Jian-Qiao Meng
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chuan-Cun Shu
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Cederbaum LS, Fedyk J. Making molecules in cavity. J Chem Phys 2024; 161:074303. [PMID: 39145554 DOI: 10.1063/5.0222754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Free molecules undergo processes with photons; in particular, they can undergo photoionization and photodissociation, which are relevant processes in nature and laboratory. Recently, it has been shown that in a cavity, the reverse process of photoionization, namely, electron capture becomes highly probable. The underlying mechanism is the formation of a hybrid resonance state. In this work, we demonstrate that the idea of enhanced reverse processes is more general. We discuss the case of the reverse process of photodissociation, namely, making a molecule out of separate atoms in a cavity. For bound electronic states, the interaction of atoms and molecules with quantum light as realized in cavities is known to give rise to the formation of hybrid light-matter states (usually called polaritons). In the scenarios discussed here, the hybrid light-matter states are resonance (metastable) states, which decay into the continuum of either electrons or of the fragments of a molecule. Resonances can substantially enhance the outcome of processes. In addition to the new resonant mechanism of molecule formation, the impact of the hybrid resonances on the scattering cross section of the atoms can be dramatic.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Jacqueline Fedyk
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| |
Collapse
|
6
|
Fábri C, Császár AG, Halász GJ, Cederbaum LS, Vibók Á. Coupling polyatomic molecules to lossy nanocavities: Lindblad vs Schrödinger description. J Chem Phys 2024; 160:214308. [PMID: 38836455 DOI: 10.1063/5.0205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The use of cavities to impact molecular structure and dynamics has become popular. As cavities, in particular plasmonic nanocavities, are lossy and the lifetime of their modes can be very short, their lossy nature must be incorporated into the calculations. The Lindblad master equation is commonly considered an appropriate tool to describe this lossy nature. This approach requires the dynamics of the density operator and is thus substantially more costly than approaches employing the Schrödinger equation for the quantum wave function when several or many nuclear degrees of freedom are involved. In this work, we compare numerically the Lindblad and Schrödinger descriptions discussed in the literature for a molecular example where the cavity is pumped by a laser. The laser and cavity properties are varied over a range of parameters. It is found that the Schrödinger description adequately describes the dynamics of the polaritons and emission signal as long as the laser intensity is moderate and the pump time is not much longer than the lifetime of the cavity mode. Otherwise, it is demonstrated that the Schrödinger description gradually fails. We also show that the failure of the Schrödinger description can often be remedied by renormalizing the wave function at every step of time propagation. The results are discussed and analyzed.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Attila G Császár
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Fábri C, Halász GJ, Cederbaum LS, Vibók Á. Impact of Cavity on Molecular Ionization Spectra. J Phys Chem Lett 2024; 15:4655-4661. [PMID: 38647546 DOI: 10.1021/acs.jpclett.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ionization phenomena have been widely studied for decades. With the advent of cavity technology, the question arises how quantum light affects molecular ionization. As the ionization spectrum is recorded from the neutral ground state, it is usually possible to choose cavities which exert negligible effect on the neutral ground state, but have significant impact on the ion and the ionization spectrum. Particularly interesting are cases where the ion exhibits conical intersections between close-lying electronic states, which gives rise to substantial nonadiabatic effects. Assuming single-molecule strong coupling, we demonstrate that vibrational modes irrelevant in the absence of a cavity play a decisive role when the molecule is in the cavity. Here, dynamical symmetry breaking is responsible for the ion-cavity coupling and high symmetry enables control of the coupling via molecular orientation relative to the cavity field polarization. Significant impact on the spectrum by the cavity is found and shown to even substantially increase for less symmetric molecules.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
8
|
Rana B, Hohenstein EG, Martínez TJ. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J Phys Chem A 2024; 128:139-151. [PMID: 38110364 DOI: 10.1021/acs.jpca.3c06607] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decade, there has been a growth of interest in polaritonic chemistry, where the formation of hybrid light-matter states (polaritons) can alter the course of photochemical reactions. These hybrid states are created by strong coupling between molecules and photons in resonant optical cavities and can even occur in the absence of light when the molecule is strongly coupled with the electromagnetic fluctuations of the vacuum field. We present a first-principles model to simulate nonadiabatic dynamics of such polaritonic states inside optical cavities by leveraging graphical processing units (GPUs). Our first implementation of this model is specialized for a single molecule coupled to a single-photon mode confined inside the optical cavity but with any number of excited states computed using complete active space configuration interaction (CASCI) and a Jaynes-Cummings-type Hamiltonian. Using this model, we have simulated the excited-state dynamics of a single salicylideneaniline (SA) molecule strongly coupled to a cavity photon with the ab initio multiple spawning (AIMS) method. We demonstrate how the branching ratios of the photodeactivation pathways for this molecule can be manipulated by coupling to the cavity. We also show how one can stop the photoreaction from happening inside of an optical cavity. Finally, we also investigate cavity-based control of the ordering of two excited states (one optically bright and the other optically dark) inside a cavity for a set of molecules, where the dark and bright states are close in energy.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
9
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
10
|
Gu B, Gu Y, Chernyak VY, Mukamel S. Cavity Control of Molecular Spectroscopy and Photophysics. Acc Chem Res 2023; 56:2753-2762. [PMID: 37782841 DOI: 10.1021/acs.accounts.3c00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
ConspectusOptical cavities have been established as a powerful platform for manipulating the spectroscopy and photophysics of molecules. Molecules placed inside an optical cavity will interact with the cavity field, even if the cavity is in the vacuum state with no photons. When the coupling strength between matter excitations, either electronic or vibrational, and a cavity photon mode surpasses all decay rates in the system, hybrid light-matter excitations known as cavity polaritons emerge. Originally studied in atomic systems, there has been growing interest in studying polaritons in molecules. Numerous studies, both experimental and theoretical, have demonstrated that the formation of molecular polaritons can significantly alter the optical, electronic, and chemical properties of molecules in a noninvasive manner.This Account focuses on novel studies that reveal how optical cavities can be employed to control electronic excitations, both valence and core, in molecules and the spectroscopic signatures of molecular polaritons. We first discuss the capacity of optical cavities to manipulate and control the intrinsic conical intersection dynamics in polyatomic molecules. Since conical intersections are responsible for a wide range of photochemical and photophysical processes such as internal conversion, photoisomerization, and singlet fission, this provides a practical strategy to control molecular photodynamics. Two examples are given for the internal conversion in pyrazine and singlet fission in a pentacene dimer. We further show how X-ray cavities can be exploited to control the core-level excitations of molecules. Core polaritons can be created from inequivalent core orbitals by exchanging X-ray cavity photons. The core polaritons can also alter the selection rules in nonlinear spectroscopy.Polaritonic states and dynamics can be monitored by nonlinear spectroscopy. Quantum light spectroscopy is a frontier in nonlinear spectroscopy that exploits the quantum-mechanical properties of light, such as entanglement and squeezing, to extract matter information inaccessible by classical light. We discuss how quantum spectroscopic techniques can be employed for probing polaritonic systems. In multimolecule polaritonic systems, there exist two-polariton states that are dark in the two-photon absorption spectrum due to destructive interference between transition pathways. We show that a time-frequency entangled photon pair can manipulate the interference between transition pathways in the two-photon absorption signal and thus capture classically dark two-polariton states. Finally, we discuss cooperative effects among molecules in spectroscopy and possibly in chemistry. When many molecules are involved in forming the polaritons, while the cooperative effects clearly manifest in the dependence of the Rabi splitting on the number of molecules, whether they can show up in chemical reactivity, which is intrinsically local, is an open question. We explore the cooperative nature of the charge migration process in a cavity and show that, unlike spectroscopy, polaritonic charge dynamics is intrinsically local and does not show collective many-molecule effects.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yonghao Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Vladimir Y Chernyak
- Department of Chemistry and Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
11
|
Ruggenthaler M, Sidler D, Rubio A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem Rev 2023; 123:11191-11229. [PMID: 37729114 PMCID: PMC10571044 DOI: 10.1021/acs.chemrev.2c00788] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 09/22/2023]
Abstract
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
Collapse
Affiliation(s)
- Michael Ruggenthaler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
12
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
13
|
Mandal A, Taylor MAD, Huo P. Theory for Cavity-Modified Ground-State Reactivities via Electron-Photon Interactions. J Phys Chem A 2023; 127:6830-6841. [PMID: 37499090 PMCID: PMC10440810 DOI: 10.1021/acs.jpca.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Indexed: 07/29/2023]
Abstract
We provide a simple and intuitive theory to explain how coupling a molecule to an optical cavity can modify ground-state chemical reactivity by exploiting intrinsic quantum behaviors of light-matter interactions. Using the recently developed polarized Fock states representation, we demonstrate that the change of the ground-state potential is achieved due to the scaling of diabatic electronic couplings with the overlap of the polarized Fock states. Our theory predicts that for a proton-transfer model system, the ground-state barrier height can be modified through light-matter interactions when the cavity frequency is in the electronic excitation range. Our simple theory explains several recent computational investigations that discovered the same effect. We further demonstrate that under the deep strong coupling limit of the light and matter, the polaritonic ground and first excited eigenstates become the Mulliken-Hush diabatic states, which are the eigenstates of the dipole operator. This work provides a simple but powerful theoretical framework to understand how strong coupling between the molecule and the cavity can modify ground-state reactivities.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A. D. Taylor
- Institute
of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Institute
of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
14
|
Cederbaum LS, Fedyk J. Activating cavity by electrons. COMMUNICATIONS PHYSICS 2023; 6:111. [PMID: 38665403 PMCID: PMC11041782 DOI: 10.1038/s42005-023-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/27/2023] [Indexed: 04/28/2024]
Abstract
The interaction of atoms and molecules with quantum light as realized in cavities has become a highly topical and fast growing research field. This interaction leads to hybrid light-matter states giving rise to new phenomena and opening up pathways to control and manipulate properties of the matter. Here, we substantially extend the scope of the interaction by allowing free electrons to enter the cavity and merge and unify the two active fields of electron scattering and quantum-light-matter interaction. In the presence of matter, hybrid metastable states are formed at electron energies of choice. The properties of these states depend strongly on the frequency and on the light-matter coupling of the cavity. The incoming electrons can be captured by the matter inside the cavity solely due to the presence of the cavity. The findings are substantiated by an explicit example and general consequences are discussed.
Collapse
Affiliation(s)
- Lorenz S. Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Jacqueline Fedyk
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Fan LB, Shu CC, Dong D, He J, Henriksen NE, Nori F. Quantum Coherent Control of a Single Molecular-Polariton Rotation. PHYSICAL REVIEW LETTERS 2023; 130:043604. [PMID: 36763416 DOI: 10.1103/physrevlett.130.043604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We present a combined analytical and numerical study for coherent terahertz control of a single molecular polariton, formed by strongly coupling two rotational states of a molecule with a single-mode cavity. Compared to the bare molecules driven by a single terahertz pulse, the presence of a cavity strongly modifies the postpulse orientation of the polariton, making it difficult to obtain its maximal degree of orientation. To solve this challenging problem toward achieving complete quantum coherent control, we derive an analytical solution of a pulse-driven quantum Jaynes-Cummings model by expanding the wave function into entangled states and constructing an effective Hamiltonian. We utilize it to design a composite terahertz pulse and obtain the maximum degree of orientation of the polariton by exploiting photon blockade effects. This Letter offers a new strategy to study rotational dynamics in the strong-coupling regime and provides a method for complete quantum coherent control of a single molecular polariton. It, therefore, has direct applications in polariton chemistry and molecular polaritonics for exploring novel quantum optical phenomena.
Collapse
Affiliation(s)
- Li-Bao Fan
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Chuan-Cun Shu
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Daoyi Dong
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
17
|
Chowdhury SN, Zhang P, Beratan DN. Interference between Molecular and Photon Field-Mediated Electron Transfer Coupling Pathways in Cavities. J Phys Chem Lett 2022; 13:9822-9828. [PMID: 36240481 DOI: 10.1021/acs.jpclett.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cavity polaritonics creates novel opportunities to direct chemical reactions. Electron transfer (ET) reactions are among the simplest reactions, and they underpin energy conversion. New strategies to manipulate and direct electron flow at the nanoscale are of particular interest in biochemistry, energy science, bioinspired materials science, and chemistry. We show that optical cavities can modulate electron transfer pathway interferences and ET rates in donor-bridge-acceptor (DBA) systems. We derive the rate for DBA electron transfer when the molecules are coupled to cavity modes, emphasizing novel cavity-induced pathway interferences with the molecular electronic coupling pathways, as these interferences allow a new kind of ET rate tuning. The interference between the cavity-induced coupling pathways and the intrinsic molecular coupling pathway is dependent on the cavity properties. Thus, manipulating the interference between the cavity-induced DA coupling and the bridge-mediated coupling offers an approach to direct and manipulate charge flow at the nanoscale.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina27710, United States
| |
Collapse
|
18
|
Structure and dynamics of electronically excited molecular systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Fregoni J, Garcia-Vidal FJ, Feist J. Theoretical Challenges in Polaritonic Chemistry. ACS PHOTONICS 2022; 9:1096-1107. [PMID: 35480492 PMCID: PMC9026242 DOI: 10.1021/acsphotonics.1c01749] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes to enable new chemical reactivities. In systems displaying this functionality, the choice of the cavity determines both the confinement of the electromagnetic field and the number of molecules that are involved in the process. While in wavelength-scale optical cavities the light-matter interaction is ruled by collective effects, plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling. Due to these very distinct situations, a multiscale theoretical toolbox is then required to explore the rich phenomenology of polaritonic chemistry. Within this framework, each component of the system (molecules and electromagnetic modes) needs to be treated in sufficient detail to obtain reliable results. Starting from the very general aspects of light-molecule interactions in typical experimental setups, we underline the basic concepts that should be taken into account when operating in this new area of research. Building on these considerations, we then provide a map of the theoretical tools already available to tackle chemical applications of molecular polaritons at different scales. Throughout the discussion, we draw attention to both the successes and the challenges still ahead in the theoretical description of polaritonic chemistry.
Collapse
Affiliation(s)
- Jacopo Fregoni
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Francisco J. Garcia-Vidal
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física
Teórica de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
20
|
Cederbaum LS. Cooperative molecular structure in polaritonic and dark states. J Chem Phys 2022; 156:184102. [DOI: 10.1063/5.0090047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction of quantum light with matter is known to give rise to mixed light-matter states. An ensemble of identical molecules is discussed. The resulting hybrid light-matter states exhibit complex structure even if only a single vibrational coordinate per molecule is considered. Starting from the uniform situation where all molecules possess the same value of this coordinate, polaritons and dark states follow like in atoms, but are functions of this coordinate. It is proven that any point on a resulting polariton energy curve is a (local) minimum or maximum for distorting molecules perpendicular to this curve. It is shown how to explicitly compute the impact of distortion solely based on the data of a free molecule. The structure of the dark states and their behavior upon distortion is analyzed as well. Useful techniques are introduced and general results on, for example, minimum energy path, symmetry breaking and restoration, are obtained. The developed strategy is transferred to include several or even many nuclear degrees of freedom per molecule and it is demonstrated that the interplay of several vibrational degrees of freedom in a single molecule of the ensemble is expected to lead to qualitatively different physics. General consequences are discussed.
Collapse
|
21
|
Cho D, Gu B, Mukamel S. Optical Cavity Manipulation and Nonlinear UV Molecular Spectroscopy of Conical Intersections in Pyrazine. J Am Chem Soc 2022; 144:7758-7767. [PMID: 35404593 DOI: 10.1021/jacs.2c00921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optical cavities provide a versatile platform for manipulating the excited-state dynamics of molecules via strong light-matter coupling. We employ optical absorption and two-multidimensional electronic spectroscopy simulations to investigate the effect of optical cavity coupling in the nonadiabatic dynamics of photoexcited pyrazine. We observe the emergence of a novel polaritonic conical intersection (PCI) between the electronic dark state and photonic surfaces as the cavity frequency is tuned. The PCI could significantly change the nonadiabatic dynamics of pyrazine by doubling the decay rate constant of the S2 state population. Moreover, the absorption spectrum and excited-state dynamics could be systematically manipulated by tuning the strong light-matter interaction, e.g., the cavity frequency and cavity coupling strength. We propose that a tunable optical cavity-molecule system may provide promising approaches for manipulating the photophysical properties of molecules.
Collapse
Affiliation(s)
- Daeheum Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Bing Gu
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
22
|
Fábri C, Halász GJ, Vibók Á. Probing Light-Induced Conical Intersections by Monitoring Multidimensional Polaritonic Surfaces. J Phys Chem Lett 2022; 13:1172-1179. [PMID: 35084197 DOI: 10.1021/acs.jpclett.1c03465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction of a molecule with the quantized electromagnetic field of a nanocavity gives rise to light-induced conical intersections between polaritonic potential energy surfaces. We demonstrate for a realistic model of a polyatomic molecule that the time-resolved ultrafast radiative emission of the cavity enables following both nuclear wavepacket dynamics on, and nonadiabatic population transfer between, polaritonic surfaces without applying a probe pulse. The latter provides an unambiguous (and in principle experimentally accessible) dynamical fingerprint of light-induced conical intersections.
Collapse
Affiliation(s)
- Csaba Fábri
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112, H-1518, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, Szeged, H-6720, Hungary
| |
Collapse
|
23
|
Fábri C, Halász GJ, Cederbaum LS, Vibók Á. Radiative emission of polaritons controlled by light-induced geometric phase. Chem Commun (Camb) 2022; 58:12612-12615. [DOI: 10.1039/d2cc04222c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polaritons – hybrid light-matter states formed in cavity – strongly change the properties of the underlying matter.
Collapse
Affiliation(s)
- Csaba Fábri
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary
| | - Gábor J. Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S. Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Limited, Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| |
Collapse
|
24
|
Beutel M, Ahrens A, Huang C, Suzuki Y, Varga K. Deformed explicitly correlated Gaussians. J Chem Phys 2021; 155:214103. [PMID: 34879658 DOI: 10.1063/5.0066427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deformed explicitly correlated Gaussian (DECG) basis functions are introduced, and their matrix elements are calculated. All matrix elements can be calculated analytically in a closed form, except the Coulomb one, which has to be approximated by a Gaussian expansion. The DECG basis functions can be used to solve problems with nonspherical potentials. One example of such potential is the dipole self-interaction term in the Pauli-Fierz Hamiltonian. Examples are presented showing the accuracy and necessity of deformed Gaussian basis functions to accurately solve light-matter coupled systems in cavity QED.
Collapse
Affiliation(s)
- Matthew Beutel
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Alexander Ahrens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chenhang Huang
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | - Kálmán Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
25
|
Nagarajan K, Thomas A, Ebbesen TW. Chemistry under Vibrational Strong Coupling. J Am Chem Soc 2021; 143:16877-16889. [PMID: 34609858 DOI: 10.1021/jacs.1c07420] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade, the possibility of manipulating chemistry and material properties using hybrid light-matter states has stimulated considerable interest. Hybrid light-matter states can be generated by placing molecules in an optical cavity that is resonant with a molecular transition. Importantly, the hybridization occurs even in the dark because the coupling process involves the zero-point fluctuations of the optical mode (a.k.a. vacuum field) and the molecular transition. In other words, unlike photochemistry, no real photon is required to induce this strong coupling phenomenon. Strong coupling in general, but vibrational strong coupling (VSC) in particular, offers exciting possibilities for molecular and, more generally, material science. Not only is it a new tool to control chemical reactivity, but it also gives insight into which vibrations are involved in a reaction. This Perspective gives the underlying fundamentals of light-matter strong coupling, including a mini-tutorial on the practical issues to achieve VSC. Recent advancements in "vibro-polaritonic chemistry" and related topics are presented along with the challenges for this exciting new field.
Collapse
Affiliation(s)
- Kalaivanan Nagarajan
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Anoop Thomas
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Thomas W Ebbesen
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
26
|
Farag MH, Mandal A, Huo P. Polariton induced conical intersection and berry phase. Phys Chem Chem Phys 2021; 23:16868-16879. [PMID: 34328152 DOI: 10.1039/d1cp00943e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigate the Polariton induced conical intersection (PICI) created from coupling a diatomic molecule with the quantized photon mode inside an optical cavity, and the corresponding Berry Phase effects. We use the rigorous Pauli-Fierz Hamiltonian to describe the quantum light-matter interactions between a LiF molecule and the cavity, and use the exact quantum propagation to investigate the polariton quantum dynamics. The molecular rotations relative to the cavity polarization direction play a role as the tuning mode of the PICI, resulting in an effective CI even within a diatomic molecule. To clearly demonstrate the dynamical effects of the Berry phase, we construct two additional models that have the same Born-Oppenheimer surface, but the effects of the geometric phase are removed. We find that when the initial wavefunction is placed in the lower polaritonic surface, the Berry phase causes a π phase-shift in the wavefunction after the encirclement around the CI, indicated from the nuclear probability distribution. On the other hand, when the initial wavefunction is placed in the upper polaritonic surface, the geometric phase significantly influences the couplings between polaritonic states and therefore, the population dynamics between them. These BP effects are further demonstrated through the photo-fragment angular distribution. PICI created from the quantized radiation field has the promise to open up new possibilities to modulate photochemical reactivities.
Collapse
Affiliation(s)
- Marwa H Farag
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA.
| | | | | |
Collapse
|
27
|
Garcia-Vidal FJ, Ciuti C, Ebbesen TW. Manipulating matter by strong coupling to vacuum fields. Science 2021; 373:373/6551/eabd0336. [PMID: 34244383 DOI: 10.1126/science.abd0336] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, there has been a surge of interest in the ability of hybrid light-matter states to control the properties of matter and chemical reactivity. Such hybrid states can be generated by simply placing a material in the spatially confined electromagnetic field of an optical resonator, such as that provided by two parallel mirrors. This occurs even in the dark because it is electromagnetic fluctuations of the cavity (the vacuum field) that strongly couple with the material. Experimental and theoretical studies have shown that the mere presence of these hybrid states can enhance properties such as transport, magnetism, and superconductivity and modify (bio)chemical reactivity. This emerging field is highly multidisciplinary, and much of its potential has yet to be explored.
Collapse
Affiliation(s)
- Francisco J Garcia-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Donostia International Physics Center, E-20018 Donostia/San Sebastián, Spain
| | - Cristiano Ciuti
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS-UMR7162, 75013 Paris, France.
| | | |
Collapse
|
28
|
Abstract
The interaction of quantum light with matter like that inside a cavity is known to give rise to mixed light-matter states called polaritons. We discuss the impact of rotation of the cavity on the polaritons. It is shown that the number of polaritons increases because of this rotation. The structure of the original polaritons is modified, and new ones are induced by the rotation that strongly depend on the angular velocity and the choice of axis of rotation. In molecules the rotation can change the number of light-induced conical intersections and their dimensionality and hence strongly impact their quantum dynamics. General consequences are discussed.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| |
Collapse
|
29
|
Cederbaum LS, Kuleff AI. Impact of cavity on interatomic Coulombic decay. Nat Commun 2021; 12:4083. [PMID: 34215732 PMCID: PMC8253799 DOI: 10.1038/s41467-021-24221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
The interatomic Coulombic decay (ICD) is an efficient electronic decay process of systems embedded in environment. In ICD, the excess energy of an excited atom A is efficiently utilized to ionize a neighboring atom B. In quantum light, an ensemble of atoms A form polaritonic states which can undergo ICD with B. Here we investigate the impact of quantum light on ICD and show that this process is strongly altered compared to classical ICD. The ICD rate depends sensitively on the atomic distribution and orientation of the ensemble. It is stressed that in contrast to superposition states formed by a laser, forming polaritons by a cavity enables to control the emergence and suppression, as well as the efficiency of ICD.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
30
|
Triana JF, Sanz-Vicario JL. Polar diatomic molecules in optical cavities: Photon scaling, rotational effects, and comparison with classical fields. J Chem Phys 2021; 154:094120. [PMID: 33685158 DOI: 10.1063/5.0037995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We address topics related to molecules coupled to quantum radiation. The formalism of light-matter interaction is different for classical and quantum fields, but some analogies remain, such as the formation of light induced crossings. We show that under particular circumstances, the molecular dynamics under quantum or classical fields produce similar results, as long as the radiation is prepared as a Fock state and far from ultra-strong coupling regimes. At this point, the choice of specific initial Fock states is irrelevant since the dynamics scales. However, in realistic multistate molecular systems, radiative scaling may fail due to the presence of simultaneous efficient non-radiative couplings in the dynamics. Polar molecules have permanent dipoles, and within the context of the full quantum Rabi model with a Pauli-Fierz Hamiltonian, they play a crucial role in the polaritonic dynamics since both permanent dipole moments and self-energy terms produce drastic changes on the undressed potential energy surfaces at high coupling strengths. We also gauge the effect of including rotational degrees of freedom in cavity molecular photodynamics. For diatomic molecules, the addition of rotation amounts to transform (both with classical or quantum fields) a light induced crossing into a light induced conical intersection. However, we show that conical intersections due to molecular rotation do not represent the standard properties of well-known efficient intrinsic conical intersections inasmuch they do not enhance the quantum transition rates.
Collapse
Affiliation(s)
- Johan F Triana
- Department of Physics, Universidad de Santiago de Chile, Avenida Ecuador 3493, Santiago, Chile
| | - José Luis Sanz-Vicario
- Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
31
|
Du M, Campos-Gonzalez-Angulo JA, Yuen-Zhou J. Nonequilibrium effects of cavity leakage and vibrational dissipation in thermally activated polariton chemistry. J Chem Phys 2021; 154:084108. [PMID: 33639750 DOI: 10.1063/5.0037905] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In vibrational strong coupling (VSC), molecular vibrations strongly interact with the modes of an optical cavity to form hybrid light-matter states known as vibrational polaritons. Experiments show that the kinetics of thermally activated chemical reactions can be modified by VSC. Transition-state theory, which assumes that internal thermalization is fast compared to reactive transitions, has been unable to explain the observed findings. Here, we carry out kinetic simulations to understand how dissipative processes, namely, those introduced by VSC to the chemical system, affect reactions where internal thermalization and reactive transitions occur on similar timescales. Using the Marcus-Levich-Jortner type of electron transfer as a model reaction, we show that such dissipation can change reactivity by accelerating internal thermalization, thereby suppressing nonequilibrium effects that occur in the reaction outside the cavity. This phenomenon is attributed mainly to cavity decay (i.e., photon leakage), but a supporting role is played by the relaxation between polaritons and dark states. When nonequilibrium effects are already suppressed in the bare reaction (the reactive species are essentially at internal thermal equilibrium throughout the reaction), we find that reactivity does not change significantly under VSC. Connections are made between our results and experimental observations.
Collapse
Affiliation(s)
- Matthew Du
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
32
|
Szidarovszky T, Badankó P, Halász GJ, Vibók Á. Nonadiabatic phenomena in molecular vibrational polaritons. J Chem Phys 2021; 154:064305. [PMID: 33588553 DOI: 10.1063/5.0033338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic phenomena are investigated in the rovibrational motion of molecules confined in an infrared cavity. Conical intersections (CIs) between vibrational polaritons, similar to CIs between electronic polaritonic surfaces, are found. The spectral, topological, and dynamic properties of the vibrational polaritons show clear fingerprints of nonadiabatic couplings between molecular vibration, rotation, and the cavity photonic mode. Furthermore, it is found that for the investigated system, composed of two rovibrating HCl molecules and the cavity mode, breaking the molecular permutational symmetry, by changing 35Cl to 37Cl in one of the HCl molecules, the polaritonic surfaces, nonadiabatic couplings, and related spectral, topological, and dynamic properties can deviate substantially. This implies that the natural occurrence of different molecular isotopologues needs to be considered when modeling realistic polaritonic systems.
Collapse
Affiliation(s)
- Tamás Szidarovszky
- Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Péter Badankó
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
33
|
Gudem M, Kowalewski M. Controlling the Photostability of Pyrrole with Optical Nanocavities. J Phys Chem A 2021; 125:1142-1151. [PMID: 33464084 PMCID: PMC7883346 DOI: 10.1021/acs.jpca.0c09252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Indexed: 11/28/2022]
Abstract
Strong light-matter coupling provides a new strategy to manipulate the non-adiabatic dynamics of molecules by modifying potential energy surfaces. The vacuum field of nanocavities can couple strongly with the molecular degrees of freedom and form hybrid light-matter states, termed as polaritons or dressed states. The photochemistry of molecules possessing intrinsic conical intersections can be significantly altered by introducing cavity couplings to create new conical intersections or avoided crossings. Here, we explore the effects of optical cavities on the photo-induced hydrogen elimination reaction of pyrrole. Wave packet dynamics simulations have been performed on the two-state, two-mode model of pyrrole, combined with the cavity photon mode. Our results show how the optical cavities assist in controlling the photostability of pyrrole and influence the reaction mechanism by providing alternative dissociation pathways. The cavity effects have been found to be intensely dependent on the resonance frequency. We further demonstrate the importance of the vibrational cavity couplings and dipole-self interaction terms in describing the cavity-modified non-adiabatic dynamics.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Physics, Albanova University
Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Albanova University
Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
34
|
Chowdhury SN, Mandal A, Huo P. Ring polymer quantization of the photon field in polariton chemistry. J Chem Phys 2021; 154:044109. [PMID: 33514102 DOI: 10.1063/5.0038330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We use the ring polymer (RP) representation to quantize the radiation field inside an optical cavity to investigate polariton quantum dynamics. Using a charge transfer model coupled to an optical cavity, we demonstrate that the RP quantization of the photon field provides accurate rate constants of the polariton mediated electron transfer reaction compared to Fermi's golden rule. Because RP quantization uses extended phase space to describe the photon field, it significantly reduces the computational costs compared to the commonly used Fock state description of the radiation field. Compared to the other quasi-classical descriptions of the photon field, such as the classical Wigner based mean-field Ehrenfest model, the RP representation provides a much more accurate description of the polaritonic quantum dynamics because it alleviates the potential quantum distribution leakage problem associated with the photonic degrees of freedom (DOF). This work demonstrates the possibility of using the ring polymer description to treat the quantized radiation field in polariton chemistry, offering an accurate and efficient approach for future investigations in cavity quantum electrodynamics.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
35
|
Fábri C, Lasorne B, Halász GJ, Cederbaum LS, Vibók Á. Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full- and reduced-dimensionality studies. J Chem Phys 2020; 153:234302. [DOI: 10.1063/5.0035870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Benjamin Lasorne
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - Gábor J. Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S. Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
36
|
Fábri C, Halász GJ, Cederbaum LS, Vibók Á. Born-Oppenheimer approximation in optical cavities: from success to breakdown. Chem Sci 2020; 12:1251-1258. [PMID: 34163887 PMCID: PMC8179040 DOI: 10.1039/d0sc05164k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The coupling of a molecule and a cavity induces nonadiabaticity in the molecule which makes the description of its dynamics complicated. For polyatomic molecules, reduced-dimensional models and the use of the Born-Oppenheimer approximation (BOA) may remedy the situation. It is demonstrated that contrary to expectation, BOA may even fail in a one-dimensional model and is generally expected to fail in two- or more-dimensional models due to the appearance of conical intersections induced by the cavity.
Collapse
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A H-1117 Budapest Hungary .,MTA-ELTE Complex Chemical Systems Research Group P.O. Box 32 H-1518 Budapest Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen P.O. Box 400 H-4002 Debrecen Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen PO Box 400 H-4002 Debrecen Hungary .,ELI-ALPS, ELI-HU Non-Profit Ltd Dugonics tér 13 H-6720 Szeged Hungary
| |
Collapse
|
37
|
Mandal A, Montillo Vega S, Huo P. Polarized Fock States and the Dynamical Casimir Effect in Molecular Cavity Quantum Electrodynamics. J Phys Chem Lett 2020; 11:9215-9223. [PMID: 32991814 DOI: 10.1021/acs.jpclett.0c02399] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a new theoretical framework, polarized Fock states (PFSs), to describe the coupled molecule-cavity hybrid system in quantum electrodynamics. Through the quantum light-matter interactions under the dipole Gauge, the molecular permanent dipoles polarize the photon field by displacing the photonic coordinate. Hence, it is convenient to use these shifted Fock states (termed the PFSs) to describe light-matter interactions under the strong coupling regimes. These PFSs are nonorthogonal to each other and are light-matter entangled states. They allow an intuitive understanding of several phenomena that go beyond the prediction of the quantum Rabi model, while also offering numerical convenience to converge the results with much fewer states. With this powerful new theoretical framework, we explain how molecular permanent dipoles lead to the generation of multiple photons from a single electronic excitation (down-conversion), effectively achieving the dynamical Casimir effect through the nuclear vibration instead of cavity mirror oscillations.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
38
|
Hoffmann NM, Lacombe L, Rubio A, Maitra NT. Effect of many modes on self-polarization and photochemical suppression in cavities. J Chem Phys 2020; 153:104103. [PMID: 32933282 DOI: 10.1063/5.0012723] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality, the quantum cavity supports a range of photon modes. Here, we demonstrate that as more photon modes are accounted for, physicochemical phenomena can dramatically change, as illustrated by the cavity-induced suppression of the important and ubiquitous process of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-modes, we find that self-polarization effects become essential, and we introduce the concept of self-polarization-modified Born-Oppenheimer surfaces as a new construct to analyze dynamics. As the number of cavity photon modes increases, the increasing deviation of these surfaces from the cavity-free Born-Oppenheimer surfaces, together with the interplay between photon emission and absorption inside the widening bands of these surfaces, leads to enhanced suppression. The present findings are general and will have implications for the description and control of cavity-driven physical processes of molecules, nanostructures, and solids embedded in cavities.
Collapse
Affiliation(s)
- Norah M Hoffmann
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| | - Lionel Lacombe
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| | - Angel Rubio
- Department of Physics, Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Neepa T Maitra
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| |
Collapse
|
39
|
Ulusoy IS, Vendrell O. Dynamics and spectroscopy of molecular ensembles in a lossy microcavity. J Chem Phys 2020; 153:044108. [PMID: 32752693 DOI: 10.1063/5.0011556] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The radiative and nonradiative relaxation dynamics of an ensemble of molecules in a microcavity are investigated with emphasis on the impact of the cavity lifetime on reactive and spectroscopic properties. Extending a previous study [I. S. Ulusoy et al., J. Phys. Chem. A 123, 8832-8844 (2019)], it is shown that the dynamics of the ensemble and of single molecules are influenced by the presence of a cavity resonance as long as the polariton splitting can be resolved spectroscopically, which critically depends on the lifetime of the system. Our simulations illustrate how the branching between nonradiative intersystem crossing and radiative decay through the cavity can be tuned by selecting specific cavity photon energies resonant at specific molecular geometries. In the case of cavity-photon energies that are not resonant at the Franck-Condon geometry of the molecules, it is demonstrated numerically and analytically that collective effects are limited to a handful of molecules in the ensemble.
Collapse
Affiliation(s)
- Inga S Ulusoy
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Mandal A, Krauss TD, Huo P. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. J Phys Chem B 2020; 124:6321-6340. [PMID: 32589846 DOI: 10.1021/acs.jpcb.0c03227] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the polariton-mediated electron transfer reaction in a model system with analytic rate constant theory and direct quantum dynamical simulations. We demonstrate that the photoinduced charge transfer reaction between a bright donor state and dark acceptor state can be significantly enhanced or suppressed by coupling the molecular system to the quantized radiation field inside an optical cavity. This is because the quantum light-matter interaction can influence the effective driving force and electronic couplings between the donor state, which is the hybrid light-matter excitation, and the molecular acceptor state. Under the resonance condition between the photonic and electronic excitations, the effective driving force can be tuned by changing the light-matter coupling strength; for an off-resonant condition, the same effect can be accomplished by changing the molecule-cavity detuning. We further demonstrate that using both the electronic coupling and light-matter coupling helps to extend the effective couplings across the entire system, even for the dark state that carries a zero transition dipole. Theoretically, we find that both the counter-rotating terms and the dipole self-energy in the quantum electrodynamics Hamiltonian are important for obtaining an accurate polariton eigenspectrum as well as the polariton-mediated charge transfer rate constant, especially in the ultrastrong coupling regime.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
41
|
Fábri C, Lasorne B, Halász GJ, Cederbaum LS, Vibók Á. Striking Generic Impact of Light-Induced Non-Adiabaticity in Polyatomic Molecules. J Phys Chem Lett 2020; 11:5324-5329. [PMID: 32530631 DOI: 10.1021/acs.jpclett.0c01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-adiabaticity, i.e., the effect of mixing electronic states by nuclear motion, is a central phenomenon in molecular science. The strongest nonadiabatic effects arise due to the presence of conical intersections of electronic energy surfaces. These intersections are abundant in polyatomic molecules. Laser light can induce in a controlled manner new conical intersections, called light-induced conical intersections, which lead to strong nonadiabatic effects similar to those of the natural conical intersections. These effects are, however, controllable and may even compete with those of the natural intersections. In this work we show that the standard low-energy vibrational spectrum of the electronic ground state can change dramatically by inducing non-adiabaticity via a light-induced conical intersection. This generic effect is demonstrated for an explicit example by full-dimensional high-level quantum calculations using a pump-probe scheme with a moderate-intensity pump laser and a weak probe laser.
Collapse
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Benjamin Lasorne
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
42
|
|
43
|
Mangaud E, Lasorne B, Atabek O, Desouter-Lecomte M. Statistical distributions of the tuning and coupling collective modes at a conical intersection using the hierarchical equations of motion. J Chem Phys 2019; 151:244102. [DOI: 10.1063/1.5128852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Etienne Mangaud
- Physicochimie des Electrolytes et des Nanosystèmes Interfaciaux-UMR 8234 Sorbonne Université, F-75252 Paris, France and Laboratoire Collisions Agrégats Réactivité (IRSAMC), Université Toulouse III Paul Sabatier, UMR 5589, F-31062 Toulouse, France
| | - Benjamin Lasorne
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - Osman Atabek
- Institut des Sciences Moléculaires d’Orsay (ISMO), Université Paris-Saclay, CNRS, F-91405 Orsay, France
| | - Michèle Desouter-Lecomte
- Institut de Chimie Physique (ICP), Université Paris-Saclay, CNRS, F-91405 Orsay, France and Département de Chimie, Université de Liège, Sart Tilman, B6, B-4000 Liège, Belgium
| |
Collapse
|
44
|
Gu B, Mukamel S. Manipulating nonadiabatic conical intersection dynamics by optical cavities. Chem Sci 2019; 11:1290-1298. [PMID: 34123253 PMCID: PMC8147895 DOI: 10.1039/c9sc04992d] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Optical cavities hold great promise to manipulate and control the photochemistry of molecules. We demonstrate how molecular photochemical processes can be manipulated by strong light-matter coupling. For a molecule with an inherent conical intersection, optical cavities can induce significant changes in the nonadiabatic dynamics by either splitting the pristine conical intersections into two novel polaritonic conical intersections or by creating light-induced avoided crossings in the polaritonic surfaces. This is demonstrated by exact real-time quantum dynamics simulations of a three-state two-mode model of pyrazine strongly coupled to a single cavity photon mode. We further explore the effects of external environments through dissipative polaritonic dynamics computed using the hierarchical equation of motion method. We find that cavity-controlled photochemistry can be immune to external environments. We also demonstrate that the polariton-induced changes in the dynamics can be monitored by transient absorption spectroscopy.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Shaul Mukamel
- Department of Chemistry, Physics and Astronomy, University of California Irvine CA 92697 USA
| |
Collapse
|
45
|
Westmoreland DE, McClelland KP, Perez KA, Schwabacher JC, Zhang Z, Weiss EA. Properties of quantum dots coupled to plasmons and optical cavities. J Chem Phys 2019; 151:210901. [DOI: 10.1063/1.5124392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dana E. Westmoreland
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, USA
| | - Kevin P. McClelland
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, USA
| | - Kaitlyn A. Perez
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, USA
| | - James C. Schwabacher
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, USA
| | - Zhengyi Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, USA
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113, USA
| |
Collapse
|
46
|
Ulusoy IS, Gomez JA, Vendrell O. Modifying the Nonradiative Decay Dynamics through Conical Intersections via Collective Coupling to a Cavity Mode. J Phys Chem A 2019; 123:8832-8844. [PMID: 31536346 DOI: 10.1021/acs.jpca.9b07404] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coupling of a molecular ensemble to the confined electromagnetic modes of a microcavity can strongly modify the photophysics and photochemistry of the molecules upon photoexcitation. We investigate here how collective coupling effects lead to modifications of the mechanisms and rates of photochemical processes, in particular, photodissociation and nonradiative decay in NaI and pyrazine, respectively. We show that, after direct excitation into the lower polaritonic states, the lower-energy light-matter hybrid states, the dynamics of the molecular ensemble coupled to light is very similar to the dynamics of the corresponding isolated molecules. Conversely, excitation into the upper polaritonic states results in more complex dynamics that involve as a first step the population transfer toward the manifold of intermediate dark states. These dynamics differ substantially from those of the isolated molecules and may result in measurable time delays for nonradiative decay or excited-state reaction mechanisms. Similarly, we describe how addition of a buffer of nonreactive molecules coupled to the cavity mode can be used to delay the onset of the photochemical processes of the reactive part of the ensemble, where the buffer medium is more effective in inhibiting the reactive process than only reactive molecules in the cavity.
Collapse
Affiliation(s)
- Inga S Ulusoy
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , Im Neuenheimer Feld 229 , 69120 Heidelberg , Germany
| | - Johana A Gomez
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , Im Neuenheimer Feld 229 , 69120 Heidelberg , Germany
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , Im Neuenheimer Feld 229 , 69120 Heidelberg , Germany
| |
Collapse
|
47
|
Mandal A, Huo P. Investigating New Reactivities Enabled by Polariton Photochemistry. J Phys Chem Lett 2019; 10:5519-5529. [PMID: 31475529 DOI: 10.1021/acs.jpclett.9b01599] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We perform quantum dynamics simulations to investigate new chemical reactivities enabled by cavity quantum electrodynamics. The quantum light-matter interactions between the molecule and the quantized radiation mode inside an optical cavity create a set of hybridized electronic-photonic states, so-called polaritons. The polaritonic states adapt the curvatures from both the ground and the excited electronic states, opening up new possibilities to control photochemical reactions by exploiting intrinsic quantum behaviors of light-matter interactions. With quantum dynamics simulations, we demonstrate that the selectivity of a model photoisomerization reaction can be controlled by tuning the photon frequency of the cavity mode or the light-matter coupling strength, providing new ways to manipulate chemical reactions via the light-matter interaction. We further investigate collective quantum effects enabled by coupling the quantized radiation mode to multiple molecules. Our results suggest that in the resonance case, a photon is recycled among molecules to enable multiple excited state reactions, thus effectively functioning as a catalyst. In the nonresonance case, molecules emit and absorb virtual photons to initiate excited state reactions through fundamental quantum electrodynamics processes. These results from quantum dynamics simulations reveal basic principles of polariton photochemistry as well as promising reactivities that take advantage of intrinsic quantum behaviors of photons.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Pengfei Huo
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| |
Collapse
|
48
|
Groenhof G, Climent C, Feist J, Morozov D, Toppari JJ. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. J Phys Chem Lett 2019; 10:5476-5483. [PMID: 31453696 PMCID: PMC6914212 DOI: 10.1021/acs.jpclett.9b02192] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/27/2019] [Indexed: 05/17/2023]
Abstract
When photoactive molecules interact strongly with confined light modes in optical cavities, new hybrid light-matter states form. They are known as polaritons and correspond to coherent superpositions of excitations of the molecules and of the cavity photon. The polariton energies and thus potential energy surfaces are changed with respect to the bare molecules, such that polariton formation is considered a promising paradigm for controlling photochemical reactions. To effectively manipulate photochemistry with confined light, the molecules need to remain in the polaritonic state long enough for the reaction on the modified potential energy surface to take place. To understand what determines this lifetime, we have performed atomistic molecular dynamics simulations of room-temperature ensembles of rhodamine chromophores strongly coupled to a single confined light mode with a 15 fs lifetime. We investigated three popular experimental scenarios and followed the relaxation after optically pumping (i) the lower polariton, (ii) the upper polariton, or (iii) uncoupled molecular states. The results of the simulations suggest that the lifetimes of the optically accessible lower and upper polaritons are limited by (i) ultrafast photoemission due to the low cavity lifetime and (ii) reversible population transfer into the "dark" state manifold. Dark states are superpositions of molecular excitations but with much smaller contributions from the cavity photon, decreasing their emission rates and hence increasing their lifetimes. We find that population transfer between polaritonic modes and dark states is determined by the overlap between the polaritonic and molecular absorption spectra. Importantly, excitation can also be transferred "upward" from the lower polariton into the dark-state reservoir due to the broad absorption spectra of the chromophores, contrary to the common conception of these processes as a "one-way" relaxation from the dark states down to the lower polariton. Our results thus suggest that polaritonic chemistry relying on modified dynamics taking place within the lower polariton manifold requires cavities with sufficiently long lifetimes and, at the same time, strong light-matter coupling strengths to prevent the back-transfer of excitation into the dark states.
Collapse
Affiliation(s)
- Gerrit Groenhof
- Nanoscience Center, Department of Chemistry, and Department of Physics, University
of Jyväskylä, P.O. Box
35, 40014 Jyväskylä, Finland
| | - Clàudia Climent
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Dmitry Morozov
- Nanoscience Center, Department of Chemistry, and Department of Physics, University
of Jyväskylä, P.O. Box
35, 40014 Jyväskylä, Finland
| | - J. Jussi Toppari
- Nanoscience Center, Department of Chemistry, and Department of Physics, University
of Jyväskylä, P.O. Box
35, 40014 Jyväskylä, Finland
| |
Collapse
|
49
|
|
50
|
Yuen-Zhou J, Saikin SK, Menon VM. Molecular Emission near Metal Interfaces: The Polaritonic Regime. J Phys Chem Lett 2018; 9:6511-6516. [PMID: 30372085 DOI: 10.1021/acs.jpclett.8b02980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The strong coupling of a dense layer of molecular excitons with surface-plasmon modes in a metal gives rise to polaritons (hybrid light-matter states) called plexcitons. Surface plasmons cannot directly emit into (or be excited by) free-space photons due to the fact that energy and momentum conservation cannot be simultaneously satisfied in photoluminescence. Most plexcitons are also formally nonemissive, even though they can radiate via molecules upon localization due to disorder and decoherence. However, a fraction of them are bright even in the presence of such deleterious processes. In this Letter, we theoretically discuss the superradiant emission properties of these bright plexcitons, which belong to the upper energy branch and reveal huge photoluminescence enhancements compared to bare excitons, due to near-divergences in the density of photonic modes available to them. Our study generalizes the well-known problem of molecular emission next to a metal interface to the polaritonic regime.
Collapse
Affiliation(s)
- Joel Yuen-Zhou
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
- Institute of Physics , Kazan Federal University , Kazan 420008 , Russian Federation
| | - Vinod M Menon
- Department of Physics, Graduate Center and City College of New York , City University of New York , New York , New York 10016 , United States
| |
Collapse
|