1
|
Huang GR, Murphy RP, Porcar L, Tung CH, Do C, Chen WR. Scattering insights into shear-induced scission of rod-like micelles. J Colloid Interface Sci 2025; 686:1125-1134. [PMID: 39933350 DOI: 10.1016/j.jcis.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
HYPOTHESIS Understanding the scission of rod-like micelles under mechanical forces is crucial for optimizing their stability and behavior in industrial applications. This study investigates how micelle length, flexibility, and external forces interact, offering insights into the design of micellar systems in processes influenced by mechanical stress. Although significant, direct experimental observations of flow-induced micellar scission using scattering techniques remain scarce. EXPERIMENTS AND SIMULATIONS Small angle neutron scattering (SANS) is used to explore the shear response of aqueous cetyltrimethylammonium bromide (CTAB) solutions with sodium nitrate. Rheological tests show shear thinning with no shear banding, ensuring a uniform flow field for reliable interpretation of scattering data. As shear rate increases, the scattering spectra show angular distortion, which is analyzed using spherical harmonic decomposition to characterize flow-induced scission and micelle orientation under shear. FINDINGS Two analysis steps are used: a model-independent spectral eigendecomposition reveals a decrease in micellar length, while regression analysis quantifies the evolution of the length distribution and mean length with shear rate. Additionally, micelle alignment increases with shear, quantified by the orientational distribution function. These findings provide experimental evidence for flow-induced alignment and scission, offering a new framework for understanding shear-induced phenomena in micellar systems.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - Ryan P Murphy
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, 20878, MD, United States
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs, B.P. 156, F-38042 Grenoble Cedex 9, France
| | - Chi-Huan Tung
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, United States
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, United States.
| |
Collapse
|
2
|
Huang GR, Tung CH, Porcar L, Shinohara Y, Do C, Chen WR, Chen P. Scattering-based structural reconstruction by dimensional elevation. J Chem Phys 2025; 162:174102. [PMID: 40309937 DOI: 10.1063/5.0257008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
This study outlines a conceptually new approach for reconstructing the neutron scattering length density profile, Δρ(r), directly from small-angle neutron scattering (SANS) intensity profiles, I(Q). The method is built upon a universal operator A, fundamental to scattering processes, which relates I(Q) to Δρ(r) through the covariance matrix X ≡ Δρ(r)Δρ(r)†. In contrast to conventional SANS data analysis techniques, this approach eliminates the need to predefine a model of Δρ(r) in the regression process. This capability inherently addresses challenges often encountered in existing spectral inversion analysis, such as convergence to local minima due to incomplete analytical models, insufficient orthogonal basis vectors, or non-orthogonality among basis functions in model-free approaches. By extending spectral regression analysis from the vector space of I(Q) to the higher-dimensional space of AXA†, the PhaseLift framework imposes convexity on the regression process. This ensures the stable and computationally efficient reconstruction of the universal minimum Δρ(r) from I(Q). Numerical benchmarks and experimental validations confirm the reliability of this approach in tackling neutron scattering inverse problems. The method establishes a robust and flexible framework for advancing neutron scattering data analysis, with the potential to significantly enhance both the precision and efficiency of experiments across various scientific domains. It provides a solid foundation for further research into the interpretation and application of scattering data.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| | - Chi-Huan Tung
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Lionel Porcar
- Institut Laue-Langevin, B.P. 156, F-38042 Grenoble Cedex 9, France
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Pengwen Chen
- Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Datta A, Wang X, Mengel SD, DeStefano AJ, Segalman RA, Underhill PT, Helgeson ME. A Gram-Charlier Analysis of Scattering to Describe Nonideal Polymer Conformations. Macromolecules 2024; 57:9518-9535. [PMID: 39465227 PMCID: PMC11500495 DOI: 10.1021/acs.macromol.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Theories of interpreting polymer physics and rheology at the molecular level from experiments, including small-angle scattering, typically rely on the assumption that polymer chains possess a Gaussian configuration distribution. This assumption frequently fails to describe features of real polymer molecules both at equilibrium (when polymers have nonlinear topology or heterogeneous chemistry) and out of equilibrium (when they are subjected to nonlinear deformations). To better describe non-Gaussian polymer conformation distributions, we propose a moments analysis based on the Gram-Charlier expansion as a natural framework for describing structure and scattering from non-Gaussian polymers. The expansion describes the conformation distribution in terms of cumulants (equivalent to moments of the distribution) of the underlying segment density distribution function, providing low-dimensional descriptors that can be inferred directly from measured scattering in a way that is agnostic to a polymer's topology, chemistry, or state of deformation. We use this framework to show that cumulants can be used to "fingerprint" non-Gaussian conformation distributions of polymers either at equilibrium (applied to sequence-defined heteropolymers) or out of equilibrium (applied to polymers experiencing nonlinear deformation due to flow). We anticipate that this new analysis method will provide a general framework for examining nonideal polymer configurations and the properties that arise from them.
Collapse
Affiliation(s)
- Anukta Datta
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Xiaoyan Wang
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Shawn D. Mengel
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Audra J. DeStefano
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Patrick T. Underhill
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Matthew E. Helgeson
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106-5080, United States
| |
Collapse
|
4
|
Tung CH, Chang SY, Yip S, Wang Y, Carrillo JMY, Sumpter BG, Shinohara Y, Do C, Chen WR. Viscoelastic relaxation and topological fluctuations in glass-forming liquids. J Chem Phys 2024; 160:094506. [PMID: 38445839 DOI: 10.1063/5.0189938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
A method for characterizing the topological fluctuations in liquids is proposed. This approach exploits the concept of the weighted gyration tensor of a collection of particles and permits the definition of a local configurational unit (LCU). The first principal axis of the gyration tensor serves as the director of the LCU, which can be tracked and analyzed by molecular dynamics simulations. Analysis of moderately supercooled Kob-Andersen mixtures suggests that orientational relaxation of the LCU closely follows viscoelastic relaxation and exhibits a two-stage behavior. The slow relaxing component of the LCU corresponds to the structural, Maxwellian mechanical relaxation. Additionally, it is found that the mean curvature of the LCUs is approximately zero at the Maxwell relaxation time with the Gaussian curvature being negative. This observation implies that structural relaxation occurs when the configurationally stable and destabilized regions interpenetrate each other in a bicontinuous manner. Finally, the mean and Gaussian curvatures of the LCUs can serve as reduced variables for the shear stress correlation, providing a compelling proof of the close connection between viscoelastic relaxation and topological fluctuations in glass-forming liquids.
Collapse
Affiliation(s)
- Chi-Huan Tung
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shou-Yi Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Sidney Yip
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
5
|
Gonzalez‐Olvera MA, Olivares‐Quiroz L. Conformational Effects of Mutations and Spherical Confinement in Small Peptides through Hybrid Multi‐Population Genetic Algorithms. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcos A Gonzalez‐Olvera
- Colegio de Ciencia y Tecnología Universidad Autónoma de la Ciudad de Mexico (UACM) Mexico City CP 09760 Mexico
| | - Luis Olivares‐Quiroz
- Colegio de Ciencia y Tecnología Universidad Autónoma de la Ciudad de Mexico (UACM) Mexico City CP 09760 Mexico
- Centro de Ciencias de la Complejidad C3 Universidad Nacional Autónoma de Mexico Mexico City CP 04510 Mexico
| |
Collapse
|
6
|
Huang GR, Carrillo JM, Wang Y, Do C, Porcar L, Sumpter B, Chen WR. An exact inversion method for extracting orientation ordering by small-angle scattering. Phys Chem Chem Phys 2021; 23:4120-4132. [PMID: 33592085 DOI: 10.1039/d0cp05886f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We outline a nonparametric inversion strategy for determining the orientation distribution function (ODF) of sheared interacting rods using small-angle scattering techniques. With the presence of direct inter-rod interaction and fluid mechanical forces, the scattering spectra are no longer characterized by the azimuthal symmetry in the coordinates defined by the principal directions of simple shear conditions, which severely compounds the reconstruction of ODFs based on currently available methods developed for dilute systems. Using a real spherical harmonic expansion scheme, the real-space ODFs are uniquely determined from the anisotropic scattering spectra and their numerical accuracy is verified computationally. Our method can be generalized to extract ODFs of uniaxially anisotropic objects under different flow conditions in a properly transformed reference frame with suitable basis vectors.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Jan Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Lionel Porcar
- Institut Laue-Langevin, B. P. 156, F-38042 Grenoble Cedex 9, France
| | - Bobby Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
7
|
Huang GR, Tung CH, Chang D, Lam CN, Do C, Shinohara Y, Chang SY, Wang Y, Hong K, Chen WR. Determining population densities in bimodal micellar solutions using contrast-variation small angle neutron scattering. J Chem Phys 2020; 153:184902. [PMID: 33187411 DOI: 10.1063/5.0024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Self-assembly of amphiphilic polymers in water is of fundamental and practical importance. Significant amounts of free unimers and associated micellar aggregates often coexist over a wide range of phase regions. The thermodynamic and kinetic properties of the microphase separation are closely related to the relative population density of unimers and micelles. Although the scattering technique has been employed to identify the structure of micellar aggregates as well as their time-evolution, the determination of the population ratio of micelles to unimers remains a challenging problem due to their difference in scattering power. Here, using small-angle neutron scattering (SANS), we present a comprehensive structural study of amphiphilic n-dodecyl-PNIPAm polymers, which shows a bimodal size distribution in water. By adjusting the deuterium/hydrogen ratio of water, the intra-micellar polymer and water distributions are obtained from the SANS spectra. The micellar size and number density are further determined, and the population densities of micelles and unimers are calculated to quantitatively address the degree of micellization at different temperatures. Our method can be used to provide an in-depth insight into the solution properties of microphase separation, which are present in many amphiphilic systems.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Chi-Huan Tung
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Dongsook Chang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Christopher N Lam
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Shou-Yi Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
8
|
Biswas AD, Barone V, Amadei A, Daidone I. Length-scale dependence of protein hydration-shell density. Phys Chem Chem Phys 2020; 22:7340-7347. [PMID: 32211621 DOI: 10.1039/c9cp06214a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we present a computational approach based on molecular dynamics (MD) simulation to study the dependence of the protein hydration-shell density on the size of the protein molecule. The hydration-shell density of eighteen different proteins, differing in size, shape and function (eight of them are antifreeze proteins), is calculated. The results obtained show that an increase in the hydration-shell density, relative to that of the bulk, is observed (in the range of 4-14%) for all studied proteins and that this increment strongly correlates with the protein size. In particular, a decrease in the density increment is observed for decreasing protein size. A simple model is proposed in which the basic idea is to approximate the protein molecule as an effective ellipsoid and to partition the relevant parameters, i.e. the solvent-accessible volume and the corresponding solvent density, into two regions: inside and outside the effective protein ellipsoid. It is found that, within the model developed here, almost all of the hydration-density increase is located inside the protein ellipsoid, basically corresponding to pockets within, or at the surface of the protein molecule. The observed decrease in the density increment is caused by the protein size only and no difference is found between antifreeze and non-antifreeze proteins.
Collapse
Affiliation(s)
- Akash Deep Biswas
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy.
| | | | | | | |
Collapse
|
9
|
Huang GR, Wang Y, Do C, Shinohara Y, Egami T, Porcar L, Liu Y, Chen WR. Orientational Distribution Function of Aligned Elongated Molecules and Particulates Determined from Their Scattering Signature. ACS Macro Lett 2019; 8:1257-1262. [PMID: 35651160 DOI: 10.1021/acsmacrolett.9b00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a strategy for quantitatively evaluating the field-induced alignment of nonspherical particles using small-angle scattering techniques. The orientational distribution function (ODF) is determined from the anisotropic scattering intensity via the scheme of real spherical harmonic expansion. Our developed approach is simple and analytical and does not require a presumptive hypothesis of the ODF as an input in data analysis. A model study of aligned rigid rods demonstrates the validity of this proposed approach to facilitate the quantitative structural characterization of materials with preferred orientational states.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Materials Science and Engineering and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lionel Porcar
- Institut Laue-Langevin, B.P. 156, F-38042 Cedex 9 Grenoble, France
| | - Yun Liu
- The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States.,Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|