Kottaichamy AR, Deebansok S, Deng J, Nazrulla MA, Zhu Y, Bhat ZM, Devendrachari MC, Vinod CP, Nimbegondi Kotresh HM, Fontaine O, Thotiyl MO. Unprecedented energy storage in metal-organic complexes
via constitutional isomerism.
Chem Sci 2023;
14:6383-6392. [PMID:
37325136 PMCID:
PMC10266471 DOI:
10.1039/d3sc01692g]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with β-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g-1 at 1 A g-1 while maintaining high performance metrics even at a rate as high as 50 A g-1. The elucidation of the decisive role of structural isomerism in reconfiguring the electrified interface represents a major step forward in understanding the electrodics of molecular platforms.
Collapse