1
|
Souza PCT, Borges-Araújo L, Brasnett C, Moreira RA, Grünewald F, Park P, Wang L, Razmazma H, Borges-Araújo AC, Cofas-Vargas LF, Monticelli L, Mera-Adasme R, Melo MN, Wu S, Marrink SJ, Poma AB, Thallmair S. GōMartini 3: From large conformational changes in proteins to environmental bias corrections. Nat Commun 2025; 16:4051. [PMID: 40307210 PMCID: PMC12043922 DOI: 10.1038/s41467-025-58719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Coarse-grained modeling has become an important tool to supplement experimental measurements, allowing access to spatio-temporal scales beyond all-atom based approaches. The GōMartini model combines structure- and physics-based coarse-grained approaches, balancing computational efficiency and accurate representation of protein dynamics with the capabilities of studying proteins in different biological environments. This paper introduces an enhanced GōMartini model, which combines a virtual-site implementation of Gō models with Martini 3. The implementation has been extensively tested by the community since the release of the reparametrized version of Martini. This work demonstrates the capabilities of the model in diverse case studies, ranging from protein-membrane binding to protein-ligand interactions and AFM force profile calculations. The model is also versatile, as it can address recent inaccuracies reported in the Martini protein model. Lastly, the paper discusses the advantages, limitations, and future perspectives of the Martini 3 protein model and its combination with Gō models.
Collapse
Affiliation(s)
- Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Rodrigo A Moreira
- NEIKER, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, Spain
| | - Fabian Grünewald
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Peter Park
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Hafez Razmazma
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Luis Fernando Cofas-Vargas
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
| | - Raúl Mera-Adasme
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Sangwook Wu
- PharmCADD, Busan, Republic of Korea
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands.
| | - Adolfo B Poma
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland.
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Anzilotti S, Franco C, Valsecchi V, Cuomo O, Lombardi G, Di Muraglia N, De Iesu N, Laudati G, Annunziato L, Canzoniero LMT, Pignataro G. Modulation of ZnT-1 by Let7a unveils a therapeutic potential in amyotrophic lateral sclerosis. Neurotherapeutics 2025; 22:e00571. [PMID: 40113485 PMCID: PMC12047506 DOI: 10.1016/j.neurot.2025.e00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
The imbalance in cellular ionic homeostasis represents a hallmark of several neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS). Zinc Transporter 1 (ZnT1), the first described member of the ZnT family, stands out as the sole member of the SLC30 family responsible for exporting cytosolic zinc to the extracellular space. While ZnT1 is expressed across all tissues and cell types studied, it exhibits the highest prominence within the central nervous system. In ALS SOD1G93A mice, a reduction in ZnT1 expression consistent with disease progression has been observed, prompting our investigation into its role in ALS pathophysiology. Remarkably, through the use of a sequence complementary to the microRNA let-7a (anti-Let-7a) able to modulate ZnT1 expression, we demonstrated in ALS mice its capability to: (1) prevent the reduction in ZnT1 levels in the spinal cord; (2) preserve motor neuron survival in the ventral spinal horn; (3) decrease astroglial and microglial activation while sparing resident microglial cells in the spinal cord; and (4) improve the lifespan and alleviate motor symptoms.
Collapse
Affiliation(s)
- Serenella Anzilotti
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Cristina Franco
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giovanna Lombardi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Noemi Di Muraglia
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | | | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Galaz-Araya C, Zuñiga-Núñez D, Salas-Sepúlveda F, Herrera-Morande A, Aspée A, Poblete H, Zamora RA. Theoretical evaluation of a bulky ortho-thioalkyl-azobenzene as an alternative to photocontrol structural cytotoxic effects of metal-free and disulfide oxidized hSOD1 in pathogenesis of ALS. RSC Adv 2025; 15:9018-9026. [PMID: 40129635 PMCID: PMC11931720 DOI: 10.1039/d4ra08972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel photopharmacological strategy to mitigate the cytotoxic effects of apo-hSOD1S-S, a misfolded protein implicated in neurodegenerative diseases. Using quantum chemical calculations and molecular dynamics simulations, we demonstrate that ortho-thio-substituted azobenzene photoswitches (ortho-TABPs) can be employed to precisely modulate the dynamics of the crucial electrostatic loop (EL) in apo-hSOD1S-S. We establish that larger ortho-S-alkyl substituents on the ortho-TABP enhance its redox stability, favouring the cis conformation through the modulation of the position of the n → π* transition. This stability is crucial for operation within the reducing cellular environment. Furthermore, we demonstrate the successful and consistent photomodulation of EL conformational dynamics in apo-hSOD1S-S through covalent tethering of an ortho-TABP. This control is achieved by leveraging the thermodynamically stable trans conformation of the photoswitch, which allosterically influences the EL and consequently, the geometry of the Zn-binding site, a critical determinant of apo-hSOD1S-S cytotoxicity. This work paves the way for developing targeted therapies for neurodegenerative diseases by demonstrating the precise and effective photomodulation of apo-hSOD1S-S via rationally designed ortho-TABPs.
Collapse
Affiliation(s)
- Constanza Galaz-Araya
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Daniel Zuñiga-Núñez
- Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Francisca Salas-Sepúlveda
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Alejandra Herrera-Morande
- Departamento de Física y Química, Facultad de Ingeniería, Universidad Autónoma de Chile Av. Pedro de Valdivia 425 Providencia 7500000 Chile
| | - Alexis Aspée
- Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Horacio Poblete
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Ricardo A Zamora
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay Talca 3460000 Chile
| |
Collapse
|
4
|
Domínguez M, A Jiménez V, Savasci G, Araya-Osorio R, Pesonen J, Mera-Adasme R. goChem: A Composable Library for Multi-Scale Computational Chemistry Data Analysis. J Comput Chem 2025; 46:e70004. [PMID: 39797684 DOI: 10.1002/jcc.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data. The library, written in and for the Go programming language, allows for easy integration of different levels of theory, in an easy-to-use API, allowing the development of both one-use and complex analysis programs in Go. We describe the library and detail some selected applications that illustrate the capabilities and potential of this tool. The library is available at http://gochem.org.
Collapse
Affiliation(s)
- Moisés Domínguez
- Departmento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile
| | - Gökcen Savasci
- Chair of Theoretical Chemistry, University of Munich (LMU), Munich, Germany
| | - Rocío Araya-Osorio
- Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Janne Pesonen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Raúl Mera-Adasme
- Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
5
|
Zhang J, Chen K, Chen Y, Hua L, Chen S, Chen X, Zou L, Li S, Yang X, Shen Y. Pathology reduction and motor behavior improvement associated with ultrasound-mediated delivery of arctiin to the motor cortex in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. ULTRASONICS 2024; 144:107449. [PMID: 39217855 DOI: 10.1016/j.ultras.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is marked by the deterioration of both cortical and spinal cord motor neurons. Despite the underlying causes of the disease remain elusive, there has been a growing attention on the well-being of cortical motor neurons in recent times. Focused ultrasound combined with microbubbles (FUS/MB) for opening the blood-brain barrier (BBB) provides a means for drug delivery to specific brain regions, holding significant promise for the treatment of neurological disorders. OBJECTIVES We aim to explore the outcomes of FUS/MB-mediated delivery of arctiin (Arc), a natural compound with anti-inflammatory activities, to the cerebral motor cortex area by using a transgenic ALS mouse model. METHODS The ALS mouse model with the SOD1G93A mutation was used and subjected to daily Arc administration with FUS/MB treatment twice a week. After six-week treatments, the motor performance was assessed by grip strength, wire hanging, and climbing-pole tests. Mouse brains, spinal cords and gastrocnemius muscle were harvested for histological staining. RESULTS Compared with the mice given Arc administration only, the combined treatments of FUS/MB with Arc induced further mitigation of the motor function decline, accompanied by improved health of the gastrocnemius muscle. Furthermore, notable neuroprotective effect was evidenced by the amelioration of motor neuron failure in the cortex and lumbar spinal cord. CONCLUSION These preliminary results indicated that the combined treatment of FUS/MB and arctiin exerted a potentially beneficial effect on neuromuscular function in the ALS disease.
Collapse
Affiliation(s)
- Ji Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Kaili Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yizhe Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Lingchen Hua
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
6
|
Korshunova K, Kiuru J, Liekkinen J, Enkavi G, Vattulainen I, Bruininks BMH. Martini 3 OliGo̅mers: A Scalable Approach for Multimers and Fibrils in GROMACS. J Chem Theory Comput 2024; 20:7635-7645. [PMID: 39189419 PMCID: PMC11391574 DOI: 10.1021/acs.jctc.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Martini 3 is a widely used coarse-grained simulation method for large-scale biomolecular simulations. It can be combined with a Go̅ model to realistically describe higher-order protein structures while allowing the folding and unfolding events. However, as of today, this method has largely been used only for individual monomers. In this article, we describe how the Go̅ model can be implemented within the framework of Martini 3 for a multimer system, taking into account both intramolecular and intermolecular interactions in an oligomeric protein system. We demonstrate the method by showing how it can be applied to both structural stability maintenance and assembly/disassembly of protein oligomers, using aquaporin tetramer, insulin dimer, and amyloid-β fibril as examples. We find that addition of intermolecular Go̅ potentials stabilizes the quaternary structure of proteins. The strength of the Go̅ potentials can be tuned so that the internal fluctuations of proteins match the behavior of atomistic simulation models, however, the results also show that the use of too strong intermolecular Go̅ potentials weakens the chemical specificity of oligomerization. The Martini-Go̅ model presented here enables the use of Go̅ potentials in oligomeric molecular systems in a computationally efficient and parallelizable manner, especially in the case of homopolymers, where the number of identical protein monomers is high. This paves the way for coarse-grained simulations of large protein complexes, such as viral protein capsids and prion fibrils, in complex biological environments.
Collapse
Affiliation(s)
- Ksenia Korshunova
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Julius Kiuru
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Juho Liekkinen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Bart M H Bruininks
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
7
|
Nemchinova M, Schuurman-Wolters GK, Whittaker JJ, Arkhipova V, Marrink SJ, Poolman B, Guskov A. Exploring the Ligand Binding and Conformational Dynamics of the Substrate-Binding Domain 1 of the ABC Transporter GlnPQ. J Phys Chem B 2024; 128:7822-7832. [PMID: 39090964 PMCID: PMC11331510 DOI: 10.1021/acs.jpcb.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The adenosine triphosphate (ATP)-binding cassette (ABC) importer GlnPQ from Lactococcus lactis has two sequential covalently linked substrate-binding domains (SBDs), which capture the substrates and deliver them to the translocon. The two SBDs differ in their ligand specificities, binding affinities and the distance to the transmembrane domain; interestingly, both SBDs can bind their ligands simultaneously without affecting each other. In this work, we studied the binding of ligands to both SBDs using X-ray crystallography and molecular dynamics simulations. We report three high-resolution structures of SBD1, namely, the wild-type SBD1 with bound asparagine or arginine, and E184D SBD1 with glutamine bound. Molecular dynamics (MD) simulations provide a detailed insight into the dynamics associated with open-closed transitions of the SBDs.
Collapse
Affiliation(s)
- Mariia Nemchinova
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Gea K. Schuurman-Wolters
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Valentina Arkhipova
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Bert Poolman
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
8
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
9
|
Wei Y, Chen AX, Lin Y, Wei T, Qiao B. Allosteric regulation in SARS-CoV-2 spike protein. Phys Chem Chem Phys 2024; 26:6582-6589. [PMID: 38329233 DOI: 10.1039/d4cp00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric regulation is common in protein-protein interactions and is thus promising in drug design. Previous experimental and simulation work supported the presence of allosteric regulation in the SARS-CoV-2 spike protein. Here the route of allosteric regulation in SARS-CoV-2 spike protein is examined by all-atom explicit solvent molecular dynamics simulations, contrastive machine learning, and the Ohm approach. It was found that peptide binding to the polybasic cleavage sites, especially the one at the first subunit of the trimeric spike protein, activates the fluctuation of the spike protein's backbone, which eventually propagates to the receptor-binding domain on the third subunit that binds to ACE2. Remarkably, the allosteric regulation routes starting from the polybasic cleavage sites share a high fraction (39-67%) of the critical amino acids with the routes starting from the nitrogen-terminal domains, suggesting the presence of an allosteric regulation network in the spike protein. Our study paves the way for the rational design of allosteric antibody inhibitors.
Collapse
Affiliation(s)
- Yong Wei
- Department of Computer Science, High Point University, High Point, NC 27268, USA
| | - Amy X Chen
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Yuewei Lin
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tao Wei
- Department of Chemical Engineering and Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | - Baofu Qiao
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY 10010, USA.
| |
Collapse
|
10
|
Basith S, Manavalan B, Lee G. Unveiling local and global conformational changes and allosteric communications in SOD1 systems using molecular dynamics simulation and network analyses. Comput Biol Med 2024; 168:107688. [PMID: 37988788 DOI: 10.1016/j.compbiomed.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder affecting nerve cells in the brain and spinal cord that is caused by mutations in the superoxide dismutase 1 (SOD1) enzyme. ALS-related mutations cause misfolding, dimerisation instability, and increased formation of aggregates. The underlying allosteric mechanisms, however, remain obscure as far as details of their fundamental atomistic structure are concerned. Hence, this gap in knowledge limits the development of novel SOD1 inhibitors and the understanding of how disease-associated mutations in distal sites affect enzyme activity. METHODS We combined microsecond-scale based unbiased molecular dynamics (MD) simulation with network analysis to elucidate the local and global conformational changes and allosteric communications in SOD1 Apo (unmetallated form), Holo, Apo_CallA (mutant and unmetallated form), and Holo_CallA (mutant form) systems. To identify hotspot residues involved in SOD1 signalling and allosteric communications, we performed network centrality, community network, and path analyses. RESULTS Structural analyses showed that unmetallated SOD1 systems and cysteine mutations displayed large structural variations in the catalytic sites, affecting structural stability. Inter- and intra H-bond analyses identified several important residues crucial for maintaining interfacial stability, structural stability, and enzyme catalysis. Dynamic motion analysis demonstrated more balanced atomic displacement and highly correlated motions in the Holo system. The rationale for structural disparity observed in the disulfide bond formation and R143 configuration in Apo and Holo systems were elucidated using distance and dihedral probability distribution analyses. CONCLUSION Our study highlights the efficiency of combining extensive MD simulations with network analyses to unravel the features of protein allostery.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Project MinE ALS Sequencing Consortium, SOD1-ALS clinical and genetic data collection group, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
12
|
Thallmair V, Schultz L, Evers S, Jolie T, Goecke C, Leitner MG, Thallmair S, Oliver D. Localization of the tubby domain, a PI(4,5)P2 biosensor, to E-Syt3-rich endoplasmic reticulum-plasma membrane junctions. J Cell Sci 2023; 136:jcs260848. [PMID: 37401342 PMCID: PMC10445746 DOI: 10.1242/jcs.260848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] acts as a signaling lipid at the plasma membrane (PM) with pleiotropic regulatory actions on multiple cellular processes. Signaling specificity might result from spatiotemporal compartmentalization of the lipid and from combinatorial binding of PI(4,5)P2 effector proteins to additional membrane components. Here, we analyzed the spatial distribution of tubbyCT, a paradigmatic PI(4,5)P2-binding domain, in live mammalian cells by total internal reflection fluorescence (TIRF) microscopy and molecular dynamics simulations. We found that unlike other well-characterized PI(4,5)P2 recognition domains, tubbyCT segregates into distinct domains within the PM. TubbyCT enrichment occurred at contact sites between PM and endoplasmic reticulum (ER) (i.e. at ER-PM junctions) as shown by colocalization with ER-PM markers. Localization to these sites was mediated in a combinatorial manner by binding to PI(4,5)P2 and by interaction with a cytosolic domain of extended synaptotagmin 3 (E-Syt3), but not other E-Syt isoforms. Selective localization to these structures suggests that tubbyCT is a novel selective reporter for a ER-PM junctional pool of PI(4,5)P2. Finally, we found that association with ER-PM junctions is a conserved feature of tubby-like proteins (TULPs), suggesting an as-yet-unknown function of TULPs.
Collapse
Affiliation(s)
- Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
| | - Lea Schultz
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Theresa Jolie
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Christian Goecke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH&Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, 35032 Marburg, Germany
| |
Collapse
|
13
|
Pang YJ, Li XC, Siegbahn PEM, Chen GJ, Tan HW. Theoretical Study of the Catalytic Mechanism of the Cu-Only Superoxide Dismutase. J Phys Chem B 2023. [PMID: 37196177 DOI: 10.1021/acs.jpcb.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The catalytic mechanisms for the wild-type and the mutated Cu-only superoxide dismutase were studied using the hybrid density functional B3LYP and a quantum chemical cluster approach. Optimal protonation states of the active site were examined for each stage of the catalytic cycle. For both the reductive and the oxidative half-reactions, the arrival of the substrate O2•- was found to be accompanied by a charge-compensating H+ with exergonicities of -15.4 kcal·mol and -4.7 kcal·mol, respectively. The second-sphere Glu-110 and first-sphere His-93 were suggested to be the transient protonation site for the reductive and the oxidative half-reactions, respectively, which collaborates with the hydrogen bonding water chain to position the substrate near the redox-active copper center. For the reductive half-reaction, the rate-limiting step was found to be the inner-sphere electron transfer from the partially coordinated O2•- to CuII with a barrier of 8.1 kcal·mol. The formed O2 is released from the active site with an exergonicity of -14.9 kcal·mol. For the oxidative half-reaction, the inner-sphere electron transfer from CuI to the partially coordinated O2•- was found to be accompanied by the proton transfer from the protonated His-93 and barrierless. The rate-limiting step was found to be the second proton transfer from the protonated Glu-110 to HO2- with a barrier of 7.3 kcal·mol. The barriers are reasonably consistent with experimental activities, and a proton-transfer rate-limiting step in the oxidative half-reaction could explain the experimentally observed pH-dependence. For the E110Q CuSOD, Asp-113 was suggested to be likely to serve as the transient protonation site in the reductive half-reaction. The rate-limiting barriers were found to be 8.0 and 8.6 kcal·mol, respectively, which could explain the slightly lower performance of E110X mutants. The results were found to be stable, with respect to the percentage of exact exchange in B3LYP.
Collapse
Affiliation(s)
- Yun-Jie Pang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Xi-Chen Li
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Guang-Ju Chen
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| |
Collapse
|
14
|
Gomes PSFC, Forrester M, Pace M, Gomes DEB, Bernardi RC. May the force be with you: The role of hyper-mechanostability of the bone sialoprotein binding protein during early stages of Staphylococci infections. Front Chem 2023; 11:1107427. [PMID: 36846849 PMCID: PMC9944720 DOI: 10.3389/fchem.2023.1107427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
The bone sialoprotein-binding protein (Bbp) is a mechanoactive MSCRAMM protein expressed on the surface of Staphylococcus aureus that mediates adherence of the bacterium to fibrinogen-α (Fgα), a component of the bone and dentine extracellular matrix of the host cell. Mechanoactive proteins like Bbp have key roles in several physiological and pathological processes. Particularly, the Bbp: Fgα interaction is important in the formation of biofilms, an important virulence factor of pathogenic bacteria. Here, we investigated the mechanostability of the Bbp: Fgα complex using in silico single-molecule force spectroscopy (SMFS), in an approach that combines results from all-atom and coarse-grained steered molecular dynamics (SMD) simulations. Our results show that Bbp is the most mechanostable MSCRAMM investigated thus far, reaching rupture forces beyond the 2 nN range in typical experimental SMFS pulling rates. Our results show that high force-loads, which are common during initial stages of bacterial infection, stabilize the interconnection between the protein's amino acids, making the protein more "rigid". Our data offer new insights that are crucial on the development of novel anti-adhesion strategies.
Collapse
Affiliation(s)
- Priscila S. F. C. Gomes
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Meredith Forrester
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Margaret Pace
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Diego E. B. Gomes
- Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
15
|
Srinivasan P, Deivasigamani P. Solid-state naked-eye sensing of Cu(II) from industrial effluents and environmental water samples using probe integrated polymeric sensor materials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Shi K, Huo Z, Liang T, Sui Y, Liu C, Shu H, Wang L, Duan D, Zou B. Harvesting PdH Employing Pd Nano Icosahedrons via High Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205133. [PMID: 36373732 PMCID: PMC9896048 DOI: 10.1002/advs.202205133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Palladium hydrides (PdHx ) have important applications in hydrogen storage, catalysis, and superconductivity. Because of the unique electron subshell structure of Pd, quenching PdHx materials with more than 0.706 hydrogen stoichiometry remains challenging. Here, the 1:1 stoichiometric PdH (F m 3 ¯ m ) $Fm\bar{3}m)$ is successfully synthesized using Pd nano icosahedrons as a starting material via high-pressure cold-forging at 0.2 GPa. The synthetic initial pressure is reduced by at least one order of magnitude relative to the bulk Pd precursors. Furthermore, PdH is quenched at ambient conditions after being laser heated ≈2000 K under ≈30 GPa. Corresponding ab initio calculations demonstrate that the high potential barrier of the facets (111) restricts hydrogen atoms' diffusion, preventing hydrogen atoms from combining to generate H2 . This study paves the way for the high-pressure synthesis of metal hydrides with promising potential applications.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Zihao Huo
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Tianxiao Liang
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Yongming Sui
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Chuang Liu
- Synergetic Extreme Condition User FacilityState Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Haiyun Shu
- Center for High Pressure Science and Technology Advanced ResearchShanghai211203P. R. China
| | - Lin Wang
- Center for High Pressure Science (CHiPS)State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoHebei066004P. R. China
| | - Defang Duan
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| |
Collapse
|
17
|
Stevens JA, Grünewald F, van Tilburg PAM, König M, Gilbert BR, Brier TA, Thornburg ZR, Luthey-Schulten Z, Marrink SJ. Molecular dynamics simulation of an entire cell. Front Chem 2023; 11:1106495. [PMID: 36742032 PMCID: PMC9889929 DOI: 10.3389/fchem.2023.1106495] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The ultimate microscope, directed at a cell, would reveal the dynamics of all the cell's components with atomic resolution. In contrast to their real-world counterparts, computational microscopes are currently on the brink of meeting this challenge. In this perspective, we show how an integrative approach can be employed to model an entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way to interrogate the cell's spatio-temporal evolution with molecular dynamics simulations, an approach that can be extended to other cell types in the near future.
Collapse
Affiliation(s)
- Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - P. A. Marco van Tilburg
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Melanie König
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Das B, Roychowdhury S, Mohanty P, Rizuan A, Chakraborty J, Mittal J, Chattopadhyay K. A Zn-dependent structural transition of SOD1 modulates its ability to undergo phase separation. EMBO J 2023; 42:e111185. [PMID: 36416085 PMCID: PMC9841336 DOI: 10.15252/embj.2022111185] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The misfolding and mutation of Cu/Zn superoxide dismutase (SOD1) is commonly associated with amyotrophic lateral sclerosis (ALS). SOD1 can accumulate within stress granules (SGs), a type of membraneless organelle, which is believed to form via liquid-liquid phase separation (LLPS). Using wild-type, metal-deficient, and different ALS disease mutants of SOD1 and computer simulations, we report here that the absence of Zn leads to structural disorder within two loop regions of SOD1, triggering SOD1 LLPS and amyloid formation. The addition of exogenous Zn to either metal-free SOD1 or to the severe ALS mutation I113T leads to the stabilization of the loops and impairs SOD1 LLPS and aggregation. Moreover, partial Zn-mediated inhibition of LLPS was observed for another severe ALS mutant, G85R, which shows perturbed Zn-binding. By contrast, the ALS mutant G37R, which shows reduced Cu-binding, does not undergo LLPS. In addition, SOD1 condensates induced by Zn-depletion exhibit greater cellular toxicity than aggregates formed by prolonged incubation under aggregating conditions. Overall, our work establishes a role for Zn-dependent modulation of SOD1 conformation and LLPS properties that may contribute to amyloid formation.
Collapse
Affiliation(s)
- Bidisha Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sumangal Roychowdhury
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Joy Chakraborty
- Cell Biology and Physiology DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
19
|
Waclawiková B, Cesar Telles de Souza P, Schwalbe M, Neochoritis CG, Hoornenborg W, Nelemans SA, Marrink SJ, El Aidy S. Potential binding modes of the gut bacterial metabolite, 5-hydroxyindole, to the intestinal L-type calcium channels and its impact on the microbiota in rats. Gut Microbes 2023; 15:2154544. [PMID: 36511640 PMCID: PMC9754111 DOI: 10.1080/19490976.2022.2154544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal microbiota and microbiota-derived metabolites play a key role in regulating the host physiology. Recently, we have identified a gut-bacterial metabolite, namely 5-hydroxyindole, as a potent stimulant of intestinal motility via its modulation of L-type voltage-gated calcium channels located on the intestinal smooth muscle cells. Dysregulation of L-type voltage-gated calcium channels is associated with various gastrointestinal motility disorders, including constipation, making L-type voltage-gated calcium channels an important target for drug development. Nonetheless, the majority of currently available drugs are associated with alteration of the gut microbiota. Using 16S rRNA sequencing this study shows that, when administered orally, 5-hydroxyindole has only marginal effects on the rat cecal microbiota. Molecular dynamics simulations propose potential-binding pockets of 5-hydroxyindole in the α1 subunit of the L-type voltage-gated calcium channels and when its stimulatory effect on the rat colonic contractility was compared to 16 different analogues, ex-vivo, 5-hydroxyindole stood as the most potent enhancer of the intestinal contractility. Overall, the present findings imply a potential role of microbiota-derived metabolites as candidate therapeutics for targeted treatment of slow intestinal motility-related disorders including constipation.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Paulo Cesar Telles de Souza
- Molecular Microbiology and Structural Biochemistry (MMSB - UMR 5086), CNRS & University of Lyon, Lyon, France
| | - Markus Schwalbe
- Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Warner Hoornenborg
- Department of Behavioral Neurosciences, Cluster Neurobiology, Groningen Institute of for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Sieger A. Nelemans
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Siewert J. Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Sahar El Aidy
- Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands,CONTACT Sahar El Aidy Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Grünewald F, Punt MH, Jefferys EE, Vainikka PA, König M, Virtanen V, Meyer TA, Pezeshkian W, Gormley AJ, Karonen M, Sansom MSP, Souza PCT, Marrink SJ. Martini 3 Coarse-Grained Force Field for Carbohydrates. J Chem Theory Comput 2022; 18:7555-7569. [PMID: 36342474 DOI: 10.1021/acs.jctc.2c00757] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach.
Collapse
Affiliation(s)
- Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Mats H Punt
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Elizabeth E Jefferys
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petteri A Vainikka
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Melanie König
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Valtteri Virtanen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Travis A Meyer
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands.,The Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon 69367, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
21
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
22
|
Thallmair V, Schultz L, Zhao W, Marrink SJ, Oliver D, Thallmair S. Two cooperative binding sites sensitize PI(4,5)P 2 recognition by the tubby domain. SCIENCE ADVANCES 2022; 8:eabp9471. [PMID: 36070381 PMCID: PMC9451155 DOI: 10.1126/sciadv.abp9471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 05/22/2023]
Abstract
Phosphoinositides (PIs) are lipid signaling molecules that operate by recruiting proteins to cellular membranes via PI recognition domains. The dominant PI of the plasma membrane is phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. One of only two PI(4,5)P2 recognition domains characterized in detail is the tubby domain. It is essential for targeting proteins into cilia involving reversible membrane association. However, the PI(4,5)P2 binding properties of tubby domains have remained enigmatic. Here, we used coarse-grained molecular dynamics simulations to explore PI(4,5)P2 binding by the prototypic tubby domain. The comparatively low PI(4,5)P2 affinity of the previously described canonical binding site is underpinned in a cooperative manner by a previously unknown, adjacent second binding site. Mutations in the previously unknown site impaired PI(4,5)P2-dependent plasma membrane localization in living cells and PI(4,5)P2 interaction in silico, emphasizing its importance for PI(4,5)P2 affinity. The two-ligand binding mode may serve to sharpen the membrane association-dissociation cycle of tubby-like proteins that underlies delivery of ciliary cargo.
Collapse
Affiliation(s)
- Veronika Thallmair
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
| | - Lea Schultz
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
| | - Wencai Zhao
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
- Corresponding author. (S.T.); (D.O.)
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- Corresponding author. (S.T.); (D.O.)
| |
Collapse
|
23
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
24
|
Baziyar P, Seyedalipour B, Hosseinkhani S. Zinc binding loop mutations of hSOD1 promote amyloid fibrils under physiological conditions: Implications for initiation of amyotrophic lateral sclerosis. Biochimie 2022; 199:170-181. [DOI: 10.1016/j.biochi.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
|
25
|
Azadi-Chegeni F, Thallmair S, Ward ME, Perin G, Marrink SJ, Baldus M, Morosinotto T, Pandit A. Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes. Biophys J 2022; 121:396-409. [PMID: 34971616 PMCID: PMC8822613 DOI: 10.1016/j.bpj.2021.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation. We present a combined NMR and coarse-grained simulation study on monomeric LHCII from the npq2 mutant that constitutively binds Zea in the Vio binding pocket. LHCII was isolated from 13C-enriched npq2 Chlamydomonas reinhardtii (Cr) cells and reconstituted in thylakoid lipid membranes. NMR results reveal selective changes in the fold and dynamics of npq2 LHCII compared with the trimeric, wild-type and show that npq2 LHCII contains multiple mono- or digalactosyl diacylglycerol lipids (MGDG and DGDG) that are strongly protein bound. Coarse-grained simulations on npq2 LHCII embedded in a thylakoid lipid membrane agree with these observations. The simulations show that LHCII monomers have more extensive lipid contacts than LHCII trimers and that protein-lipid contacts are influenced by Zea. We propose that both monomerization and Zea binding could have a functional role in modulating membrane fluidity and influence the aggregation and conformational dynamics of LHCII with a likely impact on photoprotection ability.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Meaghan E Ward
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Giorgio Perin
- Department of Biology, University of Padua, Padua, Italy
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | | | - Anjali Pandit
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
26
|
Martini 3 Model of Cellulose Microfibrils: On the Route to Capture Large Conformational Changes of Polysaccharides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030976. [PMID: 35164241 PMCID: PMC8838816 DOI: 10.3390/molecules27030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022]
Abstract
High resolution data from all-atom molecular simulations is used to parameterize a Martini 3 coarse-grained (CG) model of cellulose I allomorphs and cellulose type-II fibrils. In this case, elementary molecules are represented by four effective beads centred in the positions of O2, O3, C6, and O6 atoms in the D-glucose cellulose subunit. Non-bonded interactions between CG beads are tuned according to a low statistical criterion of structural deviation using the Martini 3 type of interactions and are capable of being indistinguishable for all studied cases. To maintain the crystalline structure of each single cellulose chain in the microfibrils, elastic potentials are employed to retain the ribbon-like structure in each chain. We find that our model is capable of describing different fibril-twist angles associated with each type of cellulose fibril in close agreement with atomistic simulation. Furthermore, our CG model poses a very small deviation from the native-like structure, making it appropriate to capture large conformational changes such as those that occur during the self-assembly process. We expect to provide a computational model suitable for several new applications such as cellulose self-assembly in different aqueous solutions and the thermal treatment of fibrils of great importance in bioindustrial applications.
Collapse
|
27
|
Computer analysis of the relation between hydrogen bond stability in SOD1 mutants and the survival time of amyotrophic lateral sclerosis patients. J Mol Graph Model 2021; 110:108026. [PMID: 34653813 DOI: 10.1016/j.jmgm.2021.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Mutations in the SOD1 protein can lead to the death of motor neurons, which, in turn, causes an incurable disease called amyotrophic lateral sclerosis (ALS). At the same time, the mechanism of the onset and development of this disease is not fully understood and is often contradictory. METHODS Accelerated Molecular Dynamics as implemented in the OpenMM library, principal component analysis, regression analysis, random forest method. RESULTS The stability of hydrogen bonds in 72 mutants of the SOD1 protein was calculated. Principal component analysis was carried out. Based on ten principal components acting as predictors, a multiple linear regression model was constructed. An analysis of the correlation of these ten principal components with the initial values of the stability of hydrogen bonds made it possible to characterize the contribution of known structurally and functionally important sites in the SOD1 to the scatter of ALS patients' survival time. CONCLUSION Such an analysis made it possible to put forward hypotheses about the relationship between the stabilizing and destabilizing effects of mutations in different structurally and functionally important regions of SOD1 with the patients's survival time.
Collapse
|
28
|
Molza AE, Gao P, Jakpou J, Nicolas J, Tsapis N, Ha-Duong T. Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine- co-citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. J Chem Theory Comput 2021; 17:4499-4511. [PMID: 34101464 DOI: 10.1021/acs.jctc.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ornithine-co-citrulline)s are ureido-based polymers, which were shown to exhibit tunable upper critical solution temperature (UCST) behavior, a property that can be exploited to develop thermoresponsive nanoparticles for controlled drug delivery systems. To gain insight into the driving forces that govern the formation and dissolution processes of poly(ornithine-co-citrulline) nanoparticles, a molecular dynamics (MD) simulation study has been carried out using MARTINI-based protein coarse-grained models. Multi-microsecond simulations at temperatures ranging from 280 to 370 K show that the fully reparametrized version 3.0 of MARTINI force field is able to capture the dependence on temperature of poly(ornithine-co-citrulline) aggregation and dissolution, while version 2.2 could not account for it. Furthermore, the phase separation observed in these simulations allowed us to extrapolate a phase diagram based on the Flory-Huggins theory of polymer solution, which could help in future rational design of drug delivery nanoparticles based on poly(amino acid)s.
Collapse
Affiliation(s)
| | - Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Justine Jakpou
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
29
|
Tsanai M, Frederix PWJM, Schroer CFE, Souza PCT, Marrink SJ. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chem Sci 2021; 12:8521-8530. [PMID: 34221333 PMCID: PMC8221187 DOI: 10.1039/d1sc00374g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Complex coacervates are liquid-liquid phase separated systems, typically containing oppositely charged polyelectrolytes. They are widely studied for their functional properties as well as their potential involvement in cellular compartmentalization as biomolecular condensates. Diffusion and partitioning of solutes into a coacervate phase are important to address because their highly dynamic nature is one of their most important functional characteristics in real-world systems, but are difficult to study experimentally or even theoretically without an explicit representation of every molecule in the system. Here, we present an explicit-solvent, molecular dynamics coarse-grain model of complex coacervates, based on the Martini 3.0 force field. We demonstrate the accuracy of the model by reproducing the salt dependent coacervation of poly-lysine and poly-glutamate systems, and show the potential of the model by simulating the partitioning of ions and small nucleotides between the condensate and surrounding solvent phase. Our model paves the way for simulating coacervates and biomolecular condensates in a wide range of conditions, with near-atomic resolution.
Collapse
Affiliation(s)
- Maria Tsanai
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Pim W J M Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, University of Lyon Lyon France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| |
Collapse
|
30
|
Lamprakis C, Andreadelis I, Manchester J, Velez-Vega C, Duca JS, Cournia Z. Evaluating the Efficiency of the Martini Force Field to Study Protein Dimerization in Aqueous and Membrane Environments. J Chem Theory Comput 2021; 17:3088-3102. [PMID: 33913726 DOI: 10.1021/acs.jctc.0c00507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein complex assembly is one of the major drivers of biological response. Understanding the mechanisms of protein oligomerization/dimerization would allow one to elucidate how these complexes participate in biological activities and could ultimately lead to new approaches in designing novel therapeutic agents. However, determining the exact association pathways and structures of such complexes remains a challenge. Here, we use parallel tempering metadynamics simulations in the well-tempered ensemble to evaluate the performance of Martini 2.2P and Martini open-beta 3 (Martini 3) force fields in reproducing the structure and energetics of the dimerization process of membrane proteins and proteins in an aqueous solution in reasonable accuracy and throughput. We find that Martini 2.2P systematically overestimates the free energy of association by estimating large barriers in distinct areas, which likely leads to overaggregation when multiple monomers are present. In comparison, the less viscous Martini 3 results in a systematic underestimation of the free energy of association for proteins in solution, while it performs well in describing the association of membrane proteins. In all cases, the near-native dimer complexes are identified as minima in the free energy surface albeit not always as the lowest minima. In the case of Martini 3, we find that the spurious supramolecular protein aggregation present in Martini 2.2P multimer simulations is alleviated and thus this force field may be more suitable for the study of protein oligomerization. We propose that the use of enhanced sampling simulations with a refined coarse-grained force field and appropriately defined collective variables is a robust approach for studying the protein dimerization process, although one should be cautious of the ranking of energy minima.
Collapse
Affiliation(s)
- Christos Lamprakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Ioannis Andreadelis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - John Manchester
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - José S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
31
|
Nemchinova M, Melcr J, Wassenaar TA, Marrink SJ, Guskov A. Asymmetric CorA Gating Mechanism as Observed by Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:2407-2417. [PMID: 33886304 PMCID: PMC8154316 DOI: 10.1021/acs.jcim.1c00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The CorA family of
proteins plays a housekeeping role in the homeostasis
of divalent metal ions in many bacteria and archaea as well as in
mitochondria of eukaryotes, rendering it an important target to study
the mechanisms of divalent transport and regulation across different
life domains. Despite numerous studies, the mechanistic details of
the channel gating and the transport of the metal ions are still not
entirely understood. Here, we use all-atom and coarse-grained molecular
dynamics simulations combined with in vitro experiments
to investigate the influence of divalent cations on the function of
CorA. Simulations reveal pronounced asymmetric movements of monomers
that enable the rotation of the α7 helix and the cytoplasmic
subdomain with the subsequent formation of new interactions and the
opening of the channel. These computational results are functionally
validated using site-directed mutagenesis of the intracellular cytoplasmic
domain residues and biochemical assays. The obtained results infer
a complex network of interactions altering the structure of CorA to
allow gating. Furthermore, we attempt to reconcile the existing gating
hypotheses for CorA to conclude the mechanism of transport of divalent
cations via these proteins.
Collapse
Affiliation(s)
- Mariia Nemchinova
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Josef Melcr
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
32
|
Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks BMH, Wassenaar TA, Kroon PC, Melcr J, Nieto V, Corradi V, Khan HM, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best RB, Vattulainen I, Monticelli L, Periole X, Tieleman DP, de Vries AH, Marrink SJ. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 2021; 18:382-388. [PMID: 33782607 DOI: 10.1038/s41592-021-01098-3] [Citation(s) in RCA: 638] [Impact Index Per Article: 159.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.
Collapse
Affiliation(s)
- Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands. .,Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France.
| | - Riccardo Alessandri
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands.,Intangible Realities Laboratory, University of Bristol, School of Chemistry, Bristol, UK
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands.,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Ignacio Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Peter C Kroon
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Vincent Nieto
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hanif M Khan
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.,Department of Chemistry and Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Jan Domański
- Department of Biochemistry, University of Oxford, Oxford, UK.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Nathalie Reuter
- Department of Chemistry and Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
| | - Xavier Periole
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
33
|
Souza PCT, Limongelli V, Wu S, Marrink SJ, Monticelli L. Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations. Front Mol Biosci 2021; 8:657222. [PMID: 33855050 PMCID: PMC8039319 DOI: 10.3389/fmolb.2021.657222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023] Open
Abstract
Molecular docking is central to rational drug design. Current docking techniques suffer, however, from limitations in protein flexibility and solvation models and by the use of simplified scoring functions. All-atom molecular dynamics simulations, on the other hand, feature a realistic representation of protein flexibility and solvent, but require knowledge of the binding site. Recently we showed that coarse-grained molecular dynamics simulations, based on the most recent version of the Martini force field, can be used to predict protein/ligand binding sites and pathways, without requiring any a priori information, and offer a level of accuracy approaching all-atom simulations. Given the excellent computational efficiency of Martini, this opens the way to high-throughput drug screening based on dynamic docking pipelines. In this opinion article, we sketch the roadmap to achieve this goal.
Collapse
Affiliation(s)
- Paulo C. T. Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
- PharmCADD, Busan, South Korea
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Sangwook Wu
- PharmCADD, Busan, South Korea
- Department of Physics, Pukyong National University, Busan, South Korea
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| |
Collapse
|
34
|
Mohsin I, Zhang LQ, Li DC, Papageorgiou AC. Crystal structure of a Cu,Zn superoxide dismutase from the thermophilic fungus Chaetomium thermophilum. Protein Pept Lett 2021; 28:1043-1053. [PMID: 33726638 DOI: 10.2174/0929866528666210316104919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thermophilic fungi have recently emerged as a promising source of thermostable enzymes. Superoxide dismutases are key antioxidant metalloenzymes with promising therapeutic effects in various diseases, both acute and chronic. However, structural heterogeneity and low thermostability limit their therapeutic efficacy. OBJECTIVE Although several studies from hypethermophilic superoxide dismutases (SODs) have been reported, information about Cu,Zn-SODs from thermophilic fungi is scarce. Chaetomium thermophilum is a thermophilic fungus that could provide proteins with thermophilic properties. METHOD The enzyme was expressed in Pichia pastoris cells and crystallized using the vapor-diffusion method. X-ray data were collected, and the structure was determined and refined to 1.56 Å resolution. Structural analysis and comparisons were carried out. RESULTS The presence of 8 molecules (A through H) in the asymmetric unit resulted in four different interfaces. Molecules A and F form the typical homodimer which is also found in other Cu,Zn-SODs. Zinc was present in all subunits of the structure while copper was found in only four subunits with reduced occupancy (C, D, E and F). CONCLUSION The ability of the enzyme to form oligomers and the elevated Thr:Ser ratio may be contributing factors to its thermal stability. Two hydrophobic residues that participate in interface formation and are not present in other CuZn-SODs may play a role in the formation of new interfaces and the oligomerization process. The CtSOD crystal structure reported here is the first Cu,Zn-SOD structure from a thermophilic fungus.
Collapse
Affiliation(s)
- Imran Mohsin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20521. Finland
| | - Li-Qing Zhang
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018. China
| | - Duo-Chuan Li
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018. China
| | | |
Collapse
|
35
|
Azizian H, Forooghian S, Amanlou A, Pérez-Sánchez H, Amanlou M. Phenothiazine as novel human superoxide dismutase modulators: discovery, optimization, and biological evaluation. J Biomol Struct Dyn 2021; 40:7070-7083. [PMID: 33663349 DOI: 10.1080/07391102.2021.1893819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Superoxide dismutases (SODs) are regarded as important antioxidants for protecting cells against damage arising from oxidative stress. Much research is focused on finding new chemicals with an ability to boost human SOD activity. In the research described herein a structure-based approach was used to identify new human Cu-Zn superoxide dismutase (SOD1) modulators based on previously reported plasmodium falciparum iron SOD inhibitors using induced fit docking and molecular dynamic (MD) protocols. The compound with the highest docking binding energy was selected for further structure simplification followed by structural similarity and MD in order to find a new activator/inhibitor scaffold of the SOD1 enzyme. According to the docking survey of the mentioned series, 1,4-bis(3-(1,4,8-trichloro-10Hphenothiazin-10-yl) propyl) piperazine (DS88) was the top scoring compound interacting with the SOD1 active site channel. Following structure simplification and similarity search, the most promising scaffold which is closely related to the phenothiazine antipsychotic class, was identified. Compared with the normal blood SOD1 activity, the percent of O2 production increased with trifluoperazine, while it decreased with the chlorpromazine. The molecular dynamic investigation shows that trifluoperazine exerts its SOD1 activating effect by stabilizing electrostatic loop while chlorpromazine employs SOD1 inhibition activity through repositioning of the electrostatic loop and increasing its distance from the catalytic metal site which diminished substrate specificity and catalytic activity of the SOD1 enzyme. The results identified the preferred region, orientation, and types of interaction for each activator or inhibitor compound.
Collapse
Affiliation(s)
- Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran Iran
| | - Simin Forooghian
- Faculty of Basic Science, Department of Biology, Tehran Payame Noor University, Tehran, Iran
| | - Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Massoud Amanlou
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Mahmood MI, Poma AB, Okazaki KI. Optimizing Gō-MARTINI Coarse-Grained Model for F-BAR Protein on Lipid Membrane. Front Mol Biosci 2021; 8:619381. [PMID: 33693028 PMCID: PMC7937874 DOI: 10.3389/fmolb.2021.619381] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Coarse-grained (CG) molecular dynamics (MD) simulations allow us to access much larger length and time scales than atomistic MD simulations, providing an attractive alternative to the conventional simulations. Based on the well-known MARTINI CG force field, the recently developed Gō-MARTINI model for proteins describes large-amplitude structural dynamics, which has not been possible with the commonly used elastic network model. Using the Gō-MARTINI model, we conduct MD simulations of the F-BAR Pacsin1 protein on lipid membrane. We observe that structural changes of the non-globular protein are largely dependent on the definition of the native contacts in the Gō model. To address this issue, we introduced a simple cutoff scheme and tuned the cutoff distance of the native contacts and the interaction strength of the Lennard-Jones potentials in the Gō-MARTINI model. With the optimized Gō-MARTINI model, we show that it reproduces structural fluctuations of the Pacsin1 dimer from atomistic simulations. We also show that two Pacsin1 dimers properly assemble through lateral interaction on the lipid membrane. Our work presents a first step towards describing membrane remodeling processes in the Gō-MARTINI CG framework by simulating a crucial step of protein assembly on the membrane.
Collapse
Affiliation(s)
- Md Iqbal Mahmood
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Adolfo B Poma
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Kei-Ichi Okazaki
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
37
|
Grünewald F, Kroon PC, Souza PCT, Marrink SJ. Protocol for Simulations of PEGylated Proteins with Martini 3. Methods Mol Biol 2021; 2199:315-335. [PMID: 33125658 DOI: 10.1007/978-1-0716-0892-0_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhancement of proteins by PEGylation is an active area of research. However, the interactions between polymer and protein are far from fully understood. To gain a better insight into these interactions or even make predictions, molecular dynamics (MD) simulations can be applied to study specific protein-polymer systems at molecular level detail. Here we present instructions on how to simulate PEGylated proteins using the latest iteration of the Martini coarse-grained (CG) force-field. CG MD simulations offer near atomistic information and at the same time allow to study complex biological systems over longer time and length scales than fully atomistic-level simulations.
Collapse
Affiliation(s)
- Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Peter C Kroon
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands. .,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
38
|
El-Sewify IM, Khalil MMH. Mesoporous nanosensors for sensitive monitoring and removal of copper ions in wastewater samples. NEW J CHEM 2021. [DOI: 10.1039/d0nj05338d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FHNS nanosensors allow for the ultra-sensitive monitoring and capture of Cu2+ ions with a low detection limit and high adsorption capacity.
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Abbassia
- Egypt
| | | |
Collapse
|
39
|
Patra J, Singh D, Jain S, Mahindroo N. Application of Docking for Lead Optimization. MOLECULAR DOCKING FOR COMPUTER-AIDED DRUG DESIGN 2021:271-294. [DOI: 10.1016/b978-0-12-822312-3.00012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
41
|
Protein-ligand binding with the coarse-grained Martini model. Nat Commun 2020; 11:3714. [PMID: 32709852 PMCID: PMC7382508 DOI: 10.1038/s41467-020-17437-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
The detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein–ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations. Here, we present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein–ligand interactions of small drug-like molecules. Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding pockets or pathways. Our approach is applied to a range of systems from the well-characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a variety of enzymes. The presented results open the way to high-throughput screening of ligand libraries or protein mutations using the coarse-grained Martini model. Computer-aided design of protein-ligand binding is important for the development of novel drugs. Here authors present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein-ligand binding interactions of small drug-like molecules.
Collapse
|