1
|
Dreiner M, Godonou ET, Mündermann A, Tascilar K, Schett G, Zaucke F, Liphardt AM, Niehoff A. Immobilization by 21-days of bed rest causes changes in biomarkers of cartilage homeostasis in healthy individuals. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100597. [PMID: 40144955 PMCID: PMC11938040 DOI: 10.1016/j.ocarto.2025.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Objective To investigate the effects of 21 days bed rest immobilization (with and without exercise and nutrition intervention) on serum concentrations of cartilage homeostasis biomarkers in healthy individuals. Design Twelve male volunteers (age 34.2 ± 8.3 years; BMI 22.4 ± 1.7 kg/m2) participated in 6 days of baseline data collection (BDC), 21 days of 6° head-down-tilt (HDT) bed rest (CON) + interventions HDT + resistive vibration exercise (RVE; 2 times/week; 25 min) and HDT + RVE + nutrition (NeX; 0.6 g/kg body weight/day whey protein and 90 mmol KHCO3/day bicarbonate supplementation), and 6 days of recovery (R) in a cross-over designed study. The starting HDT condition was randomized (CON-RVE-NeX, RVE-NeX-CON, NeX-CON-RVE). Blood samples were collected before, during and after HDT. Serum concentrations of COMP, MMP-3, MMP-9, YKL-40 and resistin were analyzed. Results The main effect of time was significant for all biomarkers tested (p < 0.001). While COMP (-36 % at HDT5, p < 0.001) and MMP-3 (-36 % at HDT21, p < 0.001) decreased during HDT bed rest, MMP-9 (+18 % at HDT5, p < 0.001) and resistin (+13 % at HDT21, p < 0.001) increased during HDT bed rest. Interestingly, during recovery, YKL-40 levels increased (+13 % at R1, p = 0.022), while MMP-9 levels decreased (-19 % at R6, p = 0.035). We identified correlations between COMP and MMP-3 (rrm = 0.58, p < 0.001) as well as between MMP-9 and resistin (rrm = 0.58, p < 0.001). Conclusions Immobilization affects serum concentrations of cartilage homeostasis biomarkers suggesting changes in cartilage metabolism that do not completely recover during re-ambulation. Both interventions had only minimal effects.
Collapse
Affiliation(s)
- Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
| | - Elie-Tino Godonou
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Annegret Mündermann
- Department of Teaching, Research and Development, Schulthess Clinic, Zurich, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Koray Tascilar
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopaedics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna-Maria Liphardt
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
2
|
Liphardt AM, Godonou ET, Dreiner M, Mündermann A, Tascilar K, Djalal N, Heer M, Schett G, Zaucke F, Niehoff A. Immobilization by 21 days of bed rest results in type II collagen degradation in healthy individuals. Osteoarthritis Cartilage 2024; 32:177-186. [PMID: 37989468 DOI: 10.1016/j.joca.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE To investigate the effects of 21 days of bed rest immobilization (with and without exercise and nutrition interventions) on type II collagen biomarker concentrations in healthy individuals. DESIGN Twelve healthy male participants (age 34.2 ± 8.3 years; body mass index 22.4 ± 1.7 kg/m²) were exposed to 6 days ambulatory baseline data collection (BDC), 21 days head-down-tilt bed rest (HDT, CON) + interventions (HDT + resistive vibration exercise (2 times/week, 25 minutes): RVE; HDT + RVE + whey protein (0.6 g/kg body weight/day) and bicarbonate supplementation (90 mmol KHCO3/day: NeX), and 6 days of re-ambulation (R) in a cross-over designed study. The starting HDT condition was randomized (CON-RVE-NEX, RVE-NEX-CON, NEX-CON-RVE). Blood and urine samples were collected before, during, and after HDT. Serum concentrations (s) of CPII, C2C, C1,2C, and urinary concentrations (u) of CTX-II and Coll2-1NO2 were measured. RESULTS Twenty-one days of HDT resulted in increased sCPII (p < 0.001), sC2C (p < 0.001), and sC1,2C (p = 0.001) (highest increases: sCPII (+24.2% - HDT5), sC2C (+24.4% - HDT7), sC1,2C (+13.5% - HDT2). sC2C remained elevated at R+1 (p = 0.002) and R+6 (p < 0.001) compared to baseline. NeX led to lower sCPII (p < 0.001) and sC1,2C (p = 0.003) compared to CON. uCTX-II (second void and 24-hour urine) increased during HDT (p < 0.001, highest increase on HDT21: second void +82.8% (p < 0.001); 24-hour urine + 77.8% (p < 0.001). NeX resulted in lower uCTX-II concentrations in 24-hour urine (p = 0.012) compared to CON. CONCLUSIONS Twenty-one days of bed rest immobilization results in type II collagen degradation that does not recover within 6 days of resuming ambulation. The combination of resistive vibration exercise and protein/bicarbonate supplementation minimally counteracted this effect.
Collapse
Affiliation(s)
- Anna-Maria Liphardt
- Department of Internal Medicine 3 - Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Elie-Tino Godonou
- Department of Internal Medicine 3 - Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany.
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland.
| | - Koray Tascilar
- Department of Internal Medicine 3 - Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Nadja Djalal
- Department of Internal Medicine 3 - Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Martina Heer
- IU International University of Applied Sciences, Health Sciences, Erfurt, Germany; Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany.
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopaedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln, Germany.
| |
Collapse
|
3
|
Noone J, Damiot A, Kenny H, Chery I, Zahariev A, Normand S, Crampes F, de Glisezinski I, Rochfort KD, Laurens C, Bareille MP, Simon C, Bergouignan A, Blanc S, O'Gorman DJ. The impact of 60 days of -6° head down tilt bed rest on mitochondrial content, respiration and regulators of mitochondrial dynamics. J Physiol 2023. [PMID: 38050414 DOI: 10.1113/jp284734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
It is unclear how skeletal muscle metabolism and mitochondrial function adapt to long duration bed rest and whether changes can be prevented by nutritional intervention. The present study aimed (1) to assess the effect of prolonged bed rest on skeletal muscle mitochondrial function and dynamics and (2) to determine whether micronutrient supplementation would mitigate the adverse metabolic effect of bed rest. Participants were maintained in energy balance throughout 60 days of bed rest with micronutrient supplementation (INT) (body mass index: 23.747 ± 1.877 kg m-2 ; 34.80 ± 7.451 years; n = 10) or without (control) (body mass index: 24.087 ± 2.088 kg m-2 ; 33.50 ± 8.541 years; n = 10). Indirect calorimetry and dual-energy x-ray absorptiometry were used for measures of energy expenditure, exercise capacity and body composition. Mitochondrial respiration was determined by high-resolution respirometry in permeabilized muscle fibre bundles from vastus lateralis biopsies. Protein and mRNA analysis further examined the metabolic changes relating to regulators of mitochondrial dynamics induced by bed rest. INT was not sufficient in preserving whole body metabolic changes conducive of a decrease in body mass, fat-free mass and exercise capacity within both groups. Mitochondrial respiration, OPA1 and Drp1 protein expression decreased with bed rest, with an increase pDrp1s616 . This reduction in mitochondrial respiration was explained through an observed decrease in mitochondrial content (mtDNA:nDNA). Changes in regulators of mitochondrial dynamics indicate an increase in mitochondrial fission driven by a decrease in inner mitochondrial membrane fusion (OPA1) and increased pDrp1s616 . KEY POINTS: Sixty days of -6° head down tilt bed rest leads to significant changes in body composition, exercise capacity and whole-body substrate metabolism. Micronutrient supplementation throughout bed rest did not preserve whole body metabolic changes. Bed rest results in a decrease in skeletal muscle mitochondrial respiratory capacity, mainly as a result of an observed decrease in mitochondrial content. Prolonged bed rest ensues changes in key regulators of mitochondrial dynamics. OPA1 and Drp1 are significantly reduced, with an increase in pDrp1s616 following bed rest indicative of an increase in mitochondrial fission. Given the reduction in mitochondrial content following 60 days of bed rest, the maintenance of regulators of mitophagy in line with the increase in regulators of mitochondrial fission may act to maintain mitochondrial respiration to meet energy demands.
Collapse
Affiliation(s)
- John Noone
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Anthony Damiot
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Helena Kenny
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | - Isabelle Chery
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Alexandre Zahariev
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Sylvie Normand
- CarMen Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - François Crampes
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
| | - Isabelle de Glisezinski
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
| | - Keith D Rochfort
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Claire Laurens
- Departments of Clinical Biochemistry and Sports Medicine, Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - Audrey Bergouignan
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
- Anschutz Health and Wellness Center, Aurora, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO, USA
| | - Stéphane Blanc
- CNRS UMR7178, Institut Pluridisciplinaire Hubert Curien, Strasbourg University, Strasbourg, France
| | - Donal J O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Thomasius F, Pesta D, Rittweger J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br J Clin Pharmacol 2023. [PMID: 37559171 DOI: 10.1111/bcp.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Despite 2 h of daily exercise training, muscle wasting and bone loss are still present after 6-month missions to the international space station. Some crew members lose bone much faster than others. In preparation for missions to the Moon and Mars, space agencies are therefore reviewing their countermeasure portfolios. Here, we discuss the potential of current pharmacological strategies. Bone loss in space is fuelled by bone resorption. Alendronate, an oral bisphosphonate, reduced bone losses in experimental bed rest and space. However, gastrointestinal side effects precluded its further utilization in space. Zoledronate (a potent bisphosphonate), denosumab (RANKL antagonist) and romosozumab (sclerostin antagonist) are all administered via injection. They effectively suppress bone resorption and are routinely prescribed against osteoporosis. Their serious adverse effects, namely, osteonecrosis of the jaw and atypical femur fractures occur very rarely when the usage is limited to 1 or 2 years. Hence, utilization of one of these compounds may outweigh the bone risks of space travelling, in particular in those with high bone resorption rates. Muscle wasting in space is likely due to hampered muscle protein synthesis. Even though this might theoretically be countered by the synthesis-boosting effects of anabolic steroids, the practical grounds for such recommendation are currently weak. Moreover, they reveal their full potential only when combined with an anabolic exercise stimulus, for example, via strength training. It therefore seems that a combination of exercise and pharmacological countermeasures should be considered for musculoskeletal health on the way to the Moon and Mars and back.
Collapse
Affiliation(s)
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
5
|
Blottner D, Moriggi M, Trautmann G, Hastermann M, Capitanio D, Torretta E, Block K, Rittweger J, Limper U, Gelfi C, Salanova M. Space Omics and Tissue Response in Astronaut Skeletal Muscle after Short and Long Duration Missions. Int J Mol Sci 2023; 24:ijms24044095. [PMID: 36835504 PMCID: PMC9962627 DOI: 10.3390/ijms24044095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The molecular mechanisms of skeletal muscle adaptation to spaceflight are as yet not fully investigated and well understood. The MUSCLE BIOPSY study analyzed pre and postflight deep calf muscle biopsies (m. soleus) obtained from five male International Space Station (ISS) astronauts. Moderate rates of myofiber atrophy were found in long-duration mission (LDM) astronauts (~180 days in space) performing routine inflight exercise as countermeasure (CM) compared to a short-duration mission (SDM) astronaut (11 days in space, little or no inflight CM) for reference control. Conventional H&E scout histology showed enlarged intramuscular connective tissue gaps between myofiber groups in LDM post vs. preflight. Immunoexpression signals of extracellular matrix (ECM) molecules, collagen 4 and 6, COL4 and 6, and perlecan were reduced while matrix-metalloproteinase, MMP2, biomarker remained unchanged in LDM post vs. preflight suggesting connective tissue remodeling. Large scale proteomics (space omics) identified two canonical protein pathways associated to muscle weakness (necroptosis, GP6 signaling/COL6) in SDM and four key pathways (Fatty acid β-oxidation, integrin-linked kinase ILK, Rho A GTPase RHO, dilated cardiomyopathy signaling) explicitly in LDM. The levels of structural ECM organization proteins COL6A1/A3, fibrillin 1, FBN1, and lumican, LUM, increased in postflight SDM vs. LDM. Proteins from tricarboxylic acid, TCA cycle, mitochondrial respiratory chain, and lipid metabolism mostly recovered in LDM vs. SDM. High levels of calcium signaling proteins, ryanodine receptor 1, RyR1, calsequestrin 1/2, CASQ1/2, annexin A2, ANXA2, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) pump, ATP2A, were signatures of SDM, and decreased levels of oxidative stress peroxiredoxin 1, PRDX1, thioredoxin-dependent peroxide reductase, PRDX3, or superoxide dismutase [Mn] 2, SOD2, signatures of LDM postflight. Results help to better understand the spatiotemporal molecular adaptation of skeletal muscle and provide a large scale database of skeletal muscle from human spaceflight for the better design of effective CM protocols in future human deep space exploration.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-347
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Maria Hastermann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Pediatrics and Adolescence Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Ulrich Limper
- Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
6
|
Noone J, O'Gorman DJ, Kenny HC. OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle. Trends Endocrinol Metab 2022; 33:710-721. [PMID: 35945104 DOI: 10.1016/j.tem.2022.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The mitochondria are double-membrane organelles integral for energy metabolism. Mitochondrial dynamics is regulated by inner and outer mitochondrial membrane (IMM and OMM) proteins, which promote fission and fusion. Optic atrophy 1 (OPA1) regulates IMM fusion, prevents apoptosis, and is a key regulator of morphological change in skeletal and cardiac muscle physiology and pathophysiology. OPA1 fuses the inner membranes of adjacent mitochondria, allowing for an increase in oxidative phosphorylation (OXPHOS). Considering the importance of energy metabolism in whole-body physiology, OPA1 and its regulators have been proposed as novel targets for the treatment of skeletal muscle atrophy and heart failure. Here, we review the role and regulation of OPA1 in skeletal muscle and cardiac pathophysiology, epitomizing its critical role in the cell.
Collapse
Affiliation(s)
- John Noone
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland; Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Donal J O'Gorman
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Helena C Kenny
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Nouri M, Pourghassem Gargari B, Tajfar P, Tarighat-Esfanjani A. A systematic review of whey protein supplementation effects on human glycemic control: A mechanistic insight. Diabetes Metab Syndr 2022; 16:102540. [PMID: 35772356 DOI: 10.1016/j.dsx.2022.102540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIMS Some studies showed that dietary factors such as whey protein (WP) are effective on glycemic regulation. Due to the current controversy about WP effects and mechanisms of its action on glycemic control, we conducted this systematic review to shed light on the subject. METHODS Web of Science, Medline (Pubmed), and Scopus online databases were searched from 2012 up to February 2022 using the following keywords: "whey protein" and "glycemic control"/"glycemia"/"glucose"/"insulin". The search included original English articles, human clinical trials with WP supplementation and measurement of glucose or insulin as an outcome, studies on healthy individuals/patients with diabetes mellitus (DM)/impaired fasting glucose (IFG). RESULTS Title/abstract of 1991 studies were reviewed. After excluding studies due to inappropriate full title and duplication, and exercising inclusion criteria, 58 studies were reviewed in detail. Ample evidence showed that WP decreased postprandial glucose incremental area under the curve (iAUC) and increased iAUCs of insulin and incretin hormones. WP affects glycemic control mainly through stimulating insulin and incretins secretion, slowing gastric emptying, and appetite suppression. CONCLUSION Although most of the recent evidence showed beneficial effects of WP supplementation on glycemic response, further long-term clinical trials are required which assess the long-term impact of WP supplementation and its exact mechanisms.
Collapse
Affiliation(s)
- Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran; Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| | - Pedram Tajfar
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| |
Collapse
|
8
|
Sharlo KA, Lvova ID, Shenkman BS. Interaction of Oxidative Metabolism and Epigenetic Regulation of Gene Expression under Muscle Functional Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in Spaceflight. Genes (Basel) 2022; 13:genes13030473. [PMID: 35328027 PMCID: PMC8953707 DOI: 10.3390/genes13030473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle atrophy is a common condition in aging, diabetes, and in long duration spaceflights due to microgravity. This article investigates multi-modal gene disease and disease drug networks via link prediction algorithms to select drugs for repurposing to treat skeletal muscle atrophy. Key target genes that cause muscle atrophy in the left and right extensor digitorum longus muscle tissue, gastrocnemius, quadriceps, and the left and right soleus muscles are detected using graph theoretic network analysis, by mining the transcriptomic datasets collected from mice flown in spaceflight made available by GeneLab. We identified the top muscle atrophy gene regulators by the Pearson correlation and Bayesian Markov blanket method. The gene disease knowledge graph was constructed using the scalable precision medicine knowledge engine. We computed node embeddings, random walk measures from the networks. Graph convolutional networks, graph neural networks, random forest, and gradient boosting methods were trained using the embeddings, network features for predicting links and ranking top gene-disease associations for skeletal muscle atrophy. Drugs were selected and a disease drug knowledge graph was constructed. Link prediction methods were applied to the disease drug networks to identify top ranked drugs for therapeutic treatment of skeletal muscle atrophy. The graph convolution network performs best in link prediction based on receiver operating characteristic curves and prediction accuracies. The key genes involved in skeletal muscle atrophy are associated with metabolic and neurodegenerative diseases. The drugs selected for repurposing using the graph convolution network method were nutrients, corticosteroids, anti-inflammatory medications, and others related to insulin.
Collapse
|
11
|
Le Roux E, De Jong NP, Blanc S, Simon C, Bessesen DH, Bergouignan A. Physiology of physical inactivity, sedentary behaviours and non-exercise activity: insights from the space bedrest model. J Physiol 2022; 600:1037-1051. [PMID: 33501660 PMCID: PMC10895929 DOI: 10.1113/jp281064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Physical inactivity, i.e. not reaching the recommended level of physical activity (PA), and sedentary behaviours (SB), i.e. sitting time, have been associated with increased risk for common metabolic diseases. Recent epidemiological data suggest that high volumes of SB are detrimental to metabolic health, even in the presence of regular exercise, i.e. moderate/vigorous PA. This suggests that the health effects of SB are independent from those of exercise. However, experimentally testing this hypothesis is complicated because of the difficulty in disassociating SB from PA. Bedrest studies, a traditional space science model, can offer new insights. In some bedrest studies, an exercise training protocol has been used to counteract the harmful effects of inactivity. While bedrest induces an inactive and sedentary state, exercise with bedrest represents a unique model of sedentary yet physically active people. Here, we review bedrest studies with and without exercise training. Although exercise training prevents the loss of muscle mass and function, even large volumes of exercise are not sufficient to fully counteract the negative metabolic adaptations triggered by inactivity. This observation supports the existence of independent adverse health effects of SB, but also the potential benefits of non-exercise activity, i.e. daily living light PA. We gathered available data to examine the complex relationships between exercise, non-exercise activity, SB and health outcomes. Given the large amount of SB in modern societies, the sole promotion of exercise, i.e. moderate/vigorous PA may be insufficient, and promotion of light PA may be a complimentary approach to improve health.
Collapse
Affiliation(s)
- Elisa Le Roux
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Nathan P De Jong
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Stéphane Blanc
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, Oullins, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Audrey Bergouignan
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
- Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| |
Collapse
|
12
|
Baumans F, Hanozin E, Baiwir D, Decroo C, Wattiez R, De Pauw E, Eppe G, Mazzucchelli G. Liquid chromatography setup-dependent artefactual methionine oxidation of peptides: The importance of an adapted quality control process. J Chromatogr A 2021; 1654:462449. [PMID: 34399143 DOI: 10.1016/j.chroma.2021.462449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022]
Abstract
In both biologics quality control experiments and protein post-translational modification studies, the analytical system used is not supposed to bring any artefactual modifications which could impair the results. In this work, we investigated oxidation of methionine-containing peptides during reversed-phase (RP) chromatographic separation. We first used a synthetic methionine-containing peptide to evaluate this artefactual phenomenon and then considered more complex samples (i.e., plasma and HeLa protein digests). The methionine oxidation levels of the peptides were systematically assessed and compared for the long-term use of the analytical column, the sample trapping time, the gradient length, the sample load and the nature of the stationary phase (HSS T3 from Waters, YMC Triart C18 from YMC Europe GmbH and BEH130 C18 from Waters). In addition to the oxidation of methionine in solution, we observed on the HSS T3 and the BEH130 stationary phases an additional broad peak corresponding to an on-column oxidized species. Considering the HSS T3 phase, our results highlight that the on-column oxidation level significantly increases with the age of the analytical column and the gradient length and reaches 56 % when a 1-year-old column set is used with a 180 min-long LC method. These levels go to 0 % and 18 % for the YMC Triart C18 and the BEH130 C18 phases respectively. Interestingly, the on-column oxidation proportion decreases as the injected sample load increases suggesting the presence of a discrete number of oxidation sites within the stationary phase of the analytical column. Those findings observed in different laboratories using distinct set of columns, albeit to varying degrees, strengthen the need for a standard of methionine-containing peptide that could be used as a quality control to appraise the status of the liquid chromatographic columns.
Collapse
Affiliation(s)
- France Baumans
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, Liege 4000, Belgium
| | - Corentin Decroo
- Proteomics and Microbiology Laboratory, University of Mons, Mons 7000, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, University of Mons, Mons 7000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium.
| |
Collapse
|
13
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 2021; 22:ijms22105081. [PMID: 34064895 PMCID: PMC8151958 DOI: 10.3390/ijms22105081] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual’s quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.
Collapse
|
15
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|