1
|
Dong Q, Tan M, Zhou Y, Zhang Y, Li J. Causal Inference and Annotation of Phosphoproteomics Data in Multiomics Cancer Studies. Mol Cell Proteomics 2025; 24:100905. [PMID: 39793886 PMCID: PMC11889353 DOI: 10.1016/j.mcpro.2025.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Protein phosphorylation plays a crucial role in regulating diverse biological processes. Perturbations in protein phosphorylation are closely associated with downstream pathway dysfunctions, whereas alterations in protein expression could serve as sensitive indicators of pathological status. However, there are currently few methods that can accurately identify the regulatory links between protein phosphorylation and expression, given issues like reverse causation and confounders. Here, we present Phoslink, a causal inference model to infer causal effects between protein phosphorylation and expression, integrating prior evidence and multiomics data. We demonstrated the feasibility and advantages of our method under various simulation scenarios. Phoslink exhibited more robust estimates and lower false discovery rate than commonly used Pearson and Spearman correlations, with better performance than canonical instrumental variable selection methods for Mendelian randomization. Applying this approach, we identified 345 causal links involving 109 phosphosites and 310 proteins in 79 lung adenocarcinoma (LUAD) samples. Based on these links, we constructed a causal regulatory network and identified 26 key regulatory phosphosites as regulators strongly associated with LUAD. Notably, 16 of these regulators were exclusively identified through phosphosite-protein causal regulatory relationships, highlighting the significance of causal inference. We explored potentially druggable phosphoproteins and provided critical clues for drug repurposing in LUAD. We also identified significant mediation between protein phosphorylation and LUAD through protein expression. In summary, our study introduces a new approach for causal inference in phosphoproteomics studies. Phoslink demonstrates its utility in potential drug target identification, thereby accelerating the clinical translation of cancer proteomics and phosphoproteomic data.
Collapse
Affiliation(s)
- Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Yingchun Zhou
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. SEC-MX: an approach to systematically study the interplay between protein assembly states and phosphorylation. Nat Commun 2025; 16:1176. [PMID: 39885126 PMCID: PMC11782603 DOI: 10.1038/s41467-025-56303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Conducting SEC-MX on HEK293 and HCT116 cells, we generate a proof-of-concept dataset, mapping thousands of phosphopeptides and their assembly states. Our analysis reveals intricate relationships between phosphorylation events and assembly states and generates testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
Affiliation(s)
- Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lauren C Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed A Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Musumeci A, Vinci M, Verbinnen I, Treccarichi S, Nigliato E, Chiavetta V, Greco D, Vitello GA, Federico C, Janssens V, Saccone S, Calì F. PPP2R5E: New gene potentially involved in specific learning disorders and myopathy. Gene 2025; 933:148945. [PMID: 39284558 DOI: 10.1016/j.gene.2024.148945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Protein phosphatase 2A (PP2A) is a family of multifunctional enzymatic complexes crucial for cellular signalling, playing a pivotal role in brain function and development. Mutations in specific genes encoding PP2A complexes have been associated with neurodevelopmental disorders with hypotonia and high risk of seizures. In the current work, we present an individual with specific learning problems, motor coordination disorders, hypotonia and behavioural issues. Although whole exome sequencing (WES) did not unveil pathogenic variants in known genes related to these symptoms, a de novo heterozygous variant Glu191Lys was identified within PPP2R5E, encoding the PP2A regulatory subunit B56ε. The novel variant was not observed in the four healthy brothers and was not detected as parental somatic mosaicism. The mutation predicted a change of charge of the mutated amino acid within a conserved LFDSEDPRER motif common to all PPP2R5 B-subunits. Biochemical assays demonstrated a decreased interaction with the PP2A A and C subunits, leading to disturbances in holoenzyme formation, and thus likely, function. For the first time, we report a potential causal link between the observed variant within the PPP2R5E gene and the symptoms manifested in the subject, spanning specific learning problems and motor coordination disorders potentially associated with myopathy.
Collapse
Affiliation(s)
- Antonino Musumeci
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Eleonora Nigliato
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Donatella Greco
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy.
| | - Francesco Calì
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| |
Collapse
|
4
|
Hardtke HA, Moreno RY, Zhang YJ. Protocol for the in vitro reconstruction of site-specifically phosphorylated RNA Pol II to identify the recruitment of novel transcription regulators. STAR Protoc 2024; 5:103277. [PMID: 39196783 PMCID: PMC11400965 DOI: 10.1016/j.xpro.2024.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/30/2024] Open
Abstract
The repetitive C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII) becomes differentially phosphorylated throughout the transcription cycle. Here, we present a protocol to site-specifically phosphorylate the CTD of RNAPII by leveraging the specificity of well-characterized CTD kinases. We describe the steps for optimal phosphorylation of the CTD and the preparation of nuclear protein extract. This protocol can be used to identify the interactome of a phospho-CTD and has the potential to identify novel RNAPII-binding proteins. For complete details on the use and execution of this protocol, please refer to Moreno et al.1.
Collapse
Affiliation(s)
- Haley A Hardtke
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| | - Rosamaria Y Moreno
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Y Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Wang S, Di Y, Yang Y, Salovska B, Li W, Hu L, Yin J, Shao W, Zhou D, Cheng J, Liu D, Yang H, Liu Y. PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals. CELL REPORTS METHODS 2024; 4:100859. [PMID: 39255793 PMCID: PMC11440062 DOI: 10.1016/j.crmeth.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
To support PTM proteomic analysis and annotation in different species, we developed PTMoreR, a user-friendly tool that considers the surrounding amino acid sequences of PTM sites during BLAST, enabling a motif-centric analysis across species. By controlling sequence window similarity, PTMoreR can map phosphoproteomic results between any two species, perform site-level functional enrichment analysis, and generate kinase-substrate networks. We demonstrate that the majority of real P-sites in mice can be inferred from experimentally derived human P-sites with PTMoreR mapping. Furthermore, the compositions of 129 mammalian phosphoproteomes can also be predicted using PTMoreR. The method also identifies cross-species phosphorylation events that occur on proteins with an increased tendency to respond to the environmental factors. Moreover, the classic kinase motifs can be extracted across mammalian species, offering an evolutionary angle for refining current motifs. PTMoreR supports PTM proteomics in non-human species and facilitates quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yin Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Liqiang Hu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahui Yin
- Information Research Institute, Tongji University, Shanghai 200092, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Zhou
- Department of Medicine, Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jingqiu Cheng
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Department of Pulmonary and Critical Care Medicine, Proteomics-Metabolomics Analysis Platform, and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale Univeristy School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Moreno RY, Panina SB, Irani S, Hardtke HA, Stephenson R, Floyd BM, Marcotte EM, Zhang Q, Zhang YJ. Thr 4 phosphorylation on RNA Pol II occurs at early transcription regulating 3'-end processing. SCIENCE ADVANCES 2024; 10:eadq0350. [PMID: 39241064 PMCID: PMC11378909 DOI: 10.1126/sciadv.adq0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
RNA polymerase II relies on a repetitive sequence domain (YSPTSPS) within its largest subunit to orchestrate transcription. While phosphorylation on serine-2/serine-5 of the carboxyl-terminal heptad repeats is well established, threonine-4's role remains enigmatic. Paradoxically, threonine-4 phosphorylation was only detected after transcription end sites despite functionally implicated in pausing, elongation, termination, and messenger RNA processing. Our investigation revealed that threonine-4 phosphorylation detection was obstructed by flanking serine-5 phosphorylation at the onset of transcription, which can be removed selectively. Subsequent proteomic analyses identified many proteins recruited to transcription via threonine-4 phosphorylation, which previously were attributed to serine-2. Loss of threonine-4 phosphorylation greatly reduces serine-2 phosphorylation, revealing a cross-talk between the two marks. Last, the function analysis of the threonine-4 phosphorylation highlighted its role in alternative 3'-end processing within pro-proliferative genes. Our findings unveil the true genomic location of this evolutionarily conserved phosphorylation mark and prompt a reassessment of functional assignments of the carboxyl-terminal domain.
Collapse
Affiliation(s)
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Renee Stephenson
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
7
|
Leggere JC, Hibbard JV, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and nonciliary phenotypes of IFT-A mutants. Mol Biol Cell 2024; 35:ar39. [PMID: 38170584 PMCID: PMC10916875 DOI: 10.1091/mbc.e23-03-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila. A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
Affiliation(s)
- Janelle C. Leggere
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Jaime V.K. Hibbard
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712
| |
Collapse
|
8
|
Skinnider MA, Akinlaja MO, Foster LJ. Mapping protein states and interactions across the tree of life with co-fractionation mass spectrometry. Nat Commun 2023; 14:8365. [PMID: 38102123 PMCID: PMC10724252 DOI: 10.1038/s41467-023-44139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
We present CFdb, a harmonized resource of interaction proteomics data from 411 co-fractionation mass spectrometry (CF-MS) datasets spanning 21,703 fractions. Meta-analysis of this resource charts protein abundance, phosphorylation, and interactions throughout the tree of life, including a reference map of the human interactome. We show how large-scale CF-MS data can enhance analyses of individual CF-MS datasets, and exemplify this strategy by mapping the honey bee interactome.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Mopelola O Akinlaja
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Moreno RY, Juetten KJ, Panina SB, Butalewicz JP, Floyd BM, Venkat Ramani MK, Marcotte EM, Brodbelt JS, Zhang YJ. Distinctive interactomes of RNA polymerase II phosphorylation during different stages of transcription. iScience 2023; 26:107581. [PMID: 37664589 PMCID: PMC10470302 DOI: 10.1016/j.isci.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
During eukaryotic transcription, RNA polymerase II undergoes dynamic post-translational modifications on the C-terminal domain (CTD) of the largest subunit, generating an information-rich PTM landscape that transcriptional regulators bind. The phosphorylation of Ser5 and Ser2 of CTD heptad occurs spatiotemporally with the transcriptional stages, recruiting different transcriptional regulators to Pol II. To delineate the protein interactomes at different transcriptional stages, we reconstructed phosphorylation patterns of the CTD at Ser5 and Ser2 in vitro. Our results showed that distinct protein interactomes are recruited to RNA polymerase II at different stages of transcription by the phosphorylation of Ser2 and Ser5 of the CTD heptads. In particular, we characterized calcium homeostasis endoplasmic reticulum protein (CHERP) as a regulator bound by phospho-Ser2 heptad. Pol II association with CHERP recruits an accessory splicing complex whose loss results in broad changes in alternative splicing events. Our results shed light on the PTM-coded recruitment process that coordinates transcription.
Collapse
Affiliation(s)
| | - Kyle J. Juetten
- Department of Chemistry, University of Texas, Austin, TX, USA
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
10
|
Kourti M, Aivaliotis M, Hatzipantelis E. Proteomics in Childhood Acute Lymphoblastic Leukemia: Challenges and Opportunities. Diagnostics (Basel) 2023; 13:2748. [PMID: 37685286 PMCID: PMC10487225 DOI: 10.3390/diagnostics13172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and one of the success stories in cancer therapeutics. Risk-directed therapy based on clinical, biologic and genetic features has played a significant role in this accomplishment. Despite the observed improvement in survival rates, leukemia remains one of the leading causes of cancer-related deaths. Implementation of next-generation genomic and transcriptomic sequencing tools has illustrated the genomic landscape of ALL. However, the underlying dynamic changes at protein level still remain a challenge. Proteomics is a cutting-edge technology aimed at deciphering the mechanisms, pathways, and the degree to which the proteome impacts leukemia subtypes. Advances in mass spectrometry enable high-throughput collection of global proteomic profiles, representing an opportunity to unveil new biological markers and druggable targets. The purpose of this narrative review article is to provide a comprehensive overview of studies that have utilized applications of proteomics in an attempt to gain insight into the pathogenesis and identification of biomarkers in childhood ALL.
Collapse
Affiliation(s)
- Maria Kourti
- Third Department of Pediatrics, School of Medicine, Aristotle University and Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Emmanouel Hatzipantelis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Leggere JC, Hibbard JVK, Papoulas O, Lee C, Pearson CG, Marcotte EM, Wallingford JB. Label-free proteomic comparison reveals ciliary and non-ciliary phenotypes of IFT-A mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531778. [PMID: 36945534 PMCID: PMC10028850 DOI: 10.1101/2023.03.08.531778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila . A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.
Collapse
|
12
|
Ercan H, Resch U, Hsu F, Mitulovic G, Bileck A, Gerner C, Yang JW, Geiger M, Miller I, Zellner M. A Practical and Analytical Comparative Study of Gel-Based Top-Down and Gel-Free Bottom-Up Proteomics Including Unbiased Proteoform Detection. Cells 2023; 12:747. [PMID: 36899884 PMCID: PMC10000902 DOI: 10.3390/cells12050747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Proteomics is an indispensable analytical technique to study the dynamic functioning of biological systems via different proteins and their proteoforms. In recent years, bottom-up shotgun has become more popular than gel-based top-down proteomics. The current study examined the qualitative and quantitative performance of these two fundamentally different methodologies by the parallel measurement of six technical and three biological replicates of the human prostate carcinoma cell line DU145 using its two most common standard techniques, label-free shotgun and two-dimensional differential gel electrophoresis (2D-DIGE). The analytical strengths and limitations were explored, finally focusing on the unbiased detection of proteoforms, exemplified by discovering a prostate cancer-related cleavage product of pyruvate kinase M2. Label-free shotgun proteomics quickly yields an annotated proteome but with reduced robustness, as determined by three times higher technical variation compared to 2D-DIGE. At a glance, only 2D-DIGE top-down analysis provided valuable, direct stoichiometric qualitative and quantitative information from proteins to their proteoforms, even with unexpected post-translational modifications, such as proteolytic cleavage and phosphorylation. However, the 2D-DIGE technology required almost 20 times as much time per protein/proteoform characterization with more manual work. Ultimately, this work should expose both techniques' orthogonality with their different contents of data output to elucidate biological questions.
Collapse
Affiliation(s)
- Huriye Ercan
- Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Immunology Outpatient Clinic, 1090 Vienna, Austria
| | - Ulrike Resch
- Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Felicia Hsu
- Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Goran Mitulovic
- Proteomics Core Facility, Clinical Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Jae-Won Yang
- Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Margarethe Geiger
- Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ingrid Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Maria Zellner
- Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
Xu C, Zhu M, Zhao S, Zhang X, Wang Y, Liu M. Mutation of S461, in the GOLGA3 phosphorylation site, does not affect mouse spermatogenesis. PeerJ 2023; 11:e15133. [PMID: 37090114 PMCID: PMC10117384 DOI: 10.7717/peerj.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Golgin subfamily A member 3 (Golga3), a member of the golgin subfamily A, is highly expressed in mouse testis. The GOLGA3 protein, which contains eight phosphorylation sites, is involved in protein transport, cell apoptosis, Golgi localization, and spermatogenesis. Although it has been previously reported that nonsense mutations in Golga3 cause multiple defects in spermatogenesis, the role of Golga3 in the testis is yet to be clarified. Methods Immunofluorescence co-localization in cells and protein dephosphorylation experiments were performed. Golga3 S461L/S461Lmice were generated using cytosine base editors. Fertility tests as well as computer-assisted sperm analysis (CASA) were then performed to investigate sperm motility within caudal epididymis. Histological and immunofluorescence staining were used to analyze testis and epididymis phenotypes and TUNEL assays were used to measure germ cell apoptosis in spermatogenic tubules. Results Immunofluorescence co-localization showed reduced Golgi localization of GOLGA3S465L with some protein scattered in the cytoplasm of HeLa cells .In addition, protein dephosphorylation experiments indicated a reduced band shift of the dephosphorylated GOLGA3S465L, confirming S461 as the phosphorylation site. Golga3 is an evolutionarily conserved gene and Golga3 S461L/S461Lmice were successfully generated using cytosine base editors. These mice had normal fertility and spermatozoa, and did not differ significantly from wild-type mice in terms of spermatogenesis and apoptotic cells in tubules. Conclusions Golga3 was found to be highly conserved in the testis, and GOLGA3 was shown to be involved in spermatogenesis, especially in apoptosis and Golgi complex-mediated effects. Infertility was also observed in Golga3 KO male mice. Although GOLGA3S465Lshowed reduced localization in the Golgi with some expression in the cytoplasm, this abnormal localization did not adversely affect fertility or spermatogenesis in male C57BL/6 mice. Therefore, mutation of the S461 GOLGA3 phosphorylation site did not affect mouse spermatogenesis.
Collapse
Affiliation(s)
- Changtong Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingcong Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Holguin-Cruz JA, Foster LJ, Gsponer J. Where protein structure and cell diversity meet. Trends Cell Biol 2022; 32:996-1007. [PMID: 35537902 DOI: 10.1016/j.tcb.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction networks - interactomes - are charted with the hope to understand how phenotypes emerge and how they are altered in disease states. Early efforts to map interactomes have focused on the assembly of context agnostic, reference networks. However, recent studies have mapped interactomes across different cell lines and tissues, finding highly variable interactomes due to the rewiring of protein-protein interactions in different contexts. Increasing evidence points to significant links between protein structure and interactome diversity seen across cell types and tissues. We discuss how recent findings support the key role of alternative splicing and phosphorylation, two well-established regulators of protein structural and functional diversity, in defining cell type- and tissue-specific interactomes. Moreover, we show that intrinsically disordered protein regions are most favorably equipped to support interactome rewiring by acting as hubs of protein structure and function regulation.
Collapse
Affiliation(s)
- Jorge A Holguin-Cruz
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
15
|
James Sanford E, Bustamante Smolka M. A field guide to the proteomics of post-translational modifications in DNA repair. Proteomics 2022; 22:e2200064. [PMID: 35695711 PMCID: PMC9950963 DOI: 10.1002/pmic.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.
Collapse
Key Words
- LC-MS/MS, technology, bottom-up proteomics, technology, signal transduction, cell biology
- phosphoproteomics, technology, post-translational modification analysis, technology, post-translational modifications, cell biology, mass spectrometry
Collapse
Affiliation(s)
- Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853,Corresponding author:
| |
Collapse
|
16
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
17
|
Emerging roles of Sirtuins in alleviating alcoholic liver Disease: A comprehensive review. Int Immunopharmacol 2022; 108:108712. [PMID: 35397391 DOI: 10.1016/j.intimp.2022.108712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Sirtuins (SIRTs), a NAD+ family of dependent deacetylases, are involved in the regulation of various human diseases. Recently, accumulating evidence has uncovered number of substrates and crucial roles of SIRTs in the pathogenesis of alcoholic liver disease (ALD). However, systematic reports are still lacking, so this review provides a comprehensive profile of the crucial physiological functions of SIRTs and its role in attenuating ALD, including alcoholic liver steatosis, steatohepatitis, and fibrosis. SIRTs play beneficial roles in energy/lipid metabolism, oxidative stress, inflammatory response, mitochondrial homeostasis, autophagy and necroptosis of ALD via regulating multiple signaling transduction pathways such as AMPK, LKB1, SREBP1, Lipin1, PGC-1α, PPARα/γ, FoxO1/3a, Nrf2/p62, mTOR, TFEB, RIPK1/3, HMGB1, NFATc4, NF-κB, TLR4, NLRP3, P2X7R, MAPK, TGF1β/Smads and Wnt/β-catenin. In addition, the mechanism and clinical application of natural/ synthetic SIRTs agonists in ALD are summarized, which provide a new idea for the treatment of ALD and basic foundation for further studies into target drugs.
Collapse
|
18
|
Kemper EK, Zhang Y, Dix MM, Cravatt BF. Global profiling of phosphorylation-dependent changes in cysteine reactivity. Nat Methods 2022; 19:341-352. [PMID: 35228727 PMCID: PMC8920781 DOI: 10.1038/s41592-022-01398-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
Abstract
Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
Collapse
Affiliation(s)
- Esther K Kemper
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yuanjin Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa M Dix
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Liu Y. A peptidoform based proteomic strategy for studying functions of post-translational modifications. Proteomics 2022; 22:e2100316. [PMID: 34878717 PMCID: PMC8959388 DOI: 10.1002/pmic.202100316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Protein post-translational modifications (PTMs) generate an enormous, but as yet undetermined, expansion of the produced proteoforms. In this Viewpoint, we firstly reviewed the concepts of proteoform and peptidoform. We show that many of the current PTM biological investigation and annotation studies largely follow a PTM site-specific rather than proteoform-specific approach. We further illustrate a potentially useful matching strategy in which a particular "modified peptidoform" is matched to the corresponding "unmodified peptidoform" as a reference for the quantitative analysis between samples and conditions. We suggest this strategy has the potential to provide more directly relevant information to learn the PTM site-specific biological functions. Accordingly, we advocate for the wider use of the nomenclature "peptidoform" in future bottom-up proteomic studies.
Collapse
Affiliation(s)
- Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA,Department of Pharmacology, Yale University, School of Medicine, New Haven, CT 06520, USA,Corresponding author:
| |
Collapse
|