1
|
Kim J, Jeong J, Jo JK, So H. Hollow microneedles as a flexible dosing control solution for transdermal drug delivery. Mater Today Bio 2025; 32:101754. [PMID: 40290896 PMCID: PMC12033995 DOI: 10.1016/j.mtbio.2025.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Microneedles, small needle-like structures typically less than 1000 μm in length, are effective tools for transporting substances across biological barriers via minimally invasive pathways. Various microelectromechanical system (MEMS) processes enable the production of different types of microneedles, including solid, coated, dissolving, hydrogel, and hollow microneedles, each tailored to specific drug and fluid delivery mechanisms. Among these, hollow microneedles stand out for their ability to offer flexible dosage control adaptable to varying drug formulations, making them particularly promising for transdermal drug delivery systems. This review examines the fabrication processes of hollow microneedles, highlights the advantages of their hollow structure for medical applications, and discusses the key factors influencing their performance. Finally, it proposes directions for advancing these technologies in both industrial and research settings.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jaeheon Jeong
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Zhou C, Feng SJ, Leong S, Breil E, Voruz F, Valentini C, Hammer DR, Aksit A, Olson ES, Guo J, Kysar JW, Lalwani AK. Contrast Enhancement of Cochlea after Direct Microneedle Intracochlear Injection of Gadodiamide through the Round Window Membrane with Minimal Dosage. Acad Radiol 2025; 32:2152-2162. [PMID: 39500641 DOI: 10.1016/j.acra.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 04/11/2025]
Abstract
RATIONALE AND OBJECTIVES The potential of contrast-enhanced MRI for diagnosing endolymphatic hydrops is limited by long wait times following intravenous (IV) or intratympanic (IT) delivery, high contrast dosages, and inconsistent signal intensity enhancements. This study investigates microneedle-mediated intracochlear (IC) gadodiamide injection for consistent and efficient contrast delivery with minimal contrast dosage. MATERIALS AND METHODS A 100 µm diameter microneedle with 35 µm lumen was used to inject 1 µL of diluted gadodiamide (17.4 mM) into a guinea pig cochlea via the round window membrane. Serial MRI imaging was performed in a post-mortem animal using a 9.4 T small-animal MRI. Maximum intensity projections of MRI scans were generated to visualize diffusion of contrast within cochlea over time; mean intensities in defined regions of interest (ROIs) were calculated. Contrast diffusion time and intensity enhancements were determined. RESULTS Contrast was observed in the basal turn of scala tympani (ST) and scala vestibuli (SV) in the first MRI scan for all subjects which was acquired as early as 35 min after injection. Two-tailed paired t-tests confirmed that contrast reached the first two turns of ST and SV within 60 min, and the second half of third turns and apical turns of ST and SV within 90 min (p < 0.05). Intensity enhancements, defined as the percentage increase of the ROI mean intensity in the injection side compared to the contralateral side, exceeded 100% in the first turn and ranged from 12% to 32% in the third and apical turns of ST and SV at 90 min after injection. CONCLUSIONS IC gadodiamide enables controllable and efficient contrast delivery with significantly lower contrast dosage, making it a viable alternative for contrast-enhanced cochlear MRI.
Collapse
Affiliation(s)
- Chaoqun Zhou
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Sharon J Feng
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Stephen Leong
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA
| | - Eugénie Breil
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - François Voruz
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Chris Valentini
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Elizabeth S Olson
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY
| | - Jia Guo
- Department of Psychiatry & The Zuckerman Institute, Columbia University, New York, NY.
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY; Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| |
Collapse
|
3
|
Voruz F, Feng SJ, Breil E, Yu M, Hammer DR, Aksit A, Zandkarimi F, Olson ES, Kysar JW, Lalwani AK. Microneedle-mediated intracochlear injection safely achieves higher perilymphatic dexamethasone concentration than intratympanic delivery in guinea pig. Drug Deliv Transl Res 2025:10.1007/s13346-025-01821-z. [PMID: 40009130 DOI: 10.1007/s13346-025-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Intracochlear injection through the round window membrane (RWM) has been proposed to overcome imprecise drug delivery into the inner ear. Using a novel ultrasharp microneedle, we compared the perilymphatic dexamethasone (DEX) concentration achieved after intratympanic vs. intracochlear injection at two different time points and assessed its safety in guinea pigs. For this purpose, DEX sodium phosphate (10 mg/mL) was administered either in the right middle ear space via continuous intratympanic injection or in the right scala tympani of the cochlea with microneedle-mediated injection (1 µL at 1 µL/min) across the RWM. Both groups were evaluated at 1-hour or 3-hour time points. Perilymph from both cochleae was sampled for liquid chromatography-mass spectrometry, and bilateral cochleae were harvested for immunofluorescence. Eighteen guinea pigs were included. The mean DEX concentration was higher in the intracochlear delivery group than in the intratympanic delivery group at 1-hour time point (mean difference 67,863 ng/mL, 95% CI (8,352-127,374 ng/mL), p = 0.03). No difference was found at 3-hour time point. In every animal on both cochleae, no disruption in hair and supportive cells of the organ of Corti and utricle was observed. Significant middle ear inflammation was observed with the intratympanic delivery method compared to intracochlear. In conclusion, microneedle-mediated intracochlear injection achieves higher perilymphatic DEX concentration than the intratympanic route by a factor of 7 while preserving the cochlear architecture and inducing significantly less middle ear inflammation. In this new era of inner ear therapeutics, the potential for translational application is tangible and promising.
Collapse
Affiliation(s)
- François Voruz
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Sharon J Feng
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York City, USA
| | - Eugénie Breil
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Michelle Yu
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York City, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York City, USA
| | - Fereshteh Zandkarimi
- Mass Spectrometry Core Facility, Department of Chemistry, Columbia University, New York City, USA
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
- Department of Biomedical Engineering, Columbia University, New York City, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York City, USA
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York City, USA.
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, New York City, USA.
- Department of Otolaryngology-Head & Neck Surgery, New York-Presbyterian / Columbia University Irving Medical Center, Associate Dean for Student Research, Columbia University Vagelos College of Physicians & Surgeons, 180 Fort Washington Avenue, HP8, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Ropri AS, Lam TG, Kalia V, Buchanan HM, Bartosch AMW, Youth EHH, Xiao H, Ross SK, Jain A, Chakrabarty JK, Kang MS, Boyett D, Spinazzi EF, Iodice G, McGovern RA, Honig LS, Brown LM, Miller GW, McKhann GM, Teich AF. Alzheimer's disease CSF biomarkers correlate with early pathology and alterations in neuronal and glial gene expression. Alzheimers Dement 2024; 20:7090-7103. [PMID: 39192661 PMCID: PMC11485399 DOI: 10.1002/alz.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early Alzheimer's disease (AD) pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify cerebrospinal fluid (CSF) biomarkers for AD-related central nervous system (CNS) pathophysiologic changes using tissue and fluids with early pathology, free of post mortem artifact. METHODS We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS AD pathology on biopsy correlates with CSF β-amyloid-42/40, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/β-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights seven core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data. DISCUSSION As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking. HIGHLIGHTS AD CSF biomarkers correlate with CNS pathology and transcriptomic changes. Seven proteins correlate with CNS pathology and gene expression changes. Inflammatory and neuronal gene expression changes correlate with YKL-40 and NPTXR, respectively. CSF metabolomic analysis identifies pathways that correlate with biopsy data. Fatty acid metabolic pathways correlate with β-amyloid pathology.
Collapse
Affiliation(s)
- Ali S. Ropri
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tiffany G. Lam
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Heather M. Buchanan
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anne Marie W. Bartosch
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Elliot H. H. Youth
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Harrison Xiao
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Sophie K. Ross
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anu Jain
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Jayanta K. Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Min Suk Kang
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Boyett
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Eleonora F. Spinazzi
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Gail Iodice
- Ankyra TherapeuticsCambridgeMassachusettsUSA
| | - Robert A. McGovern
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Guy M. McKhann
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Andrew F. Teich
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
5
|
Feng SJ, Voruz F, Leong S, Hammer DR, Breil E, Aksit A, Yu M, Chiriboga L, Olson ES, Kysar JW, Lalwani AK. Microneedle-Mediated Delivery of siRNA via Liposomal-Based Transfection for Inner Ear Gene Therapy. Otol Neurotol 2024; 45:1068-1077. [PMID: 39165134 DOI: 10.1097/mao.0000000000004297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
HYPOTHESIS Microneedle-mediated intracochlear injection of siRNA-Lipofectamine through the round window membrane (RWM) can be used to transfect cells within the cochlea. BACKGROUND Our laboratory has developed 100-μm diameter hollow microneedles for intracochlear injection through the guinea pig RWM. In this study, we test the feasibility of microneedle-mediated injection of siRNA and Lipofectamine, a commonly used reagent with known cellular toxicity, through the RWM for cochlear transfection. METHODS Fluorescently labeled scramble siRNA was diluted into Lipofectamine RNAiMax and OptiMEM. One microliter of 5 μM siRNA was injected through the RWM of Hartley guinea pigs at a rate of 1 μl/min (n = 22). In a control group, 1.0 μl of Lipofectamine, with no siRNA, was diluted into OptiMEM and injected in a similar fashion (n = 5). Hearing tests were performed before and either at 24 hours, 48 hours, or 5 days after injection. Afterward, animals were euthanized, and cochleae were harvested for imaging. Control cochleae were processed in parallel to untreated guinea pigs. RESULTS Fluorescence, indicating successful transfection, was observed within the basal and middle turns of the cochlea with limited distribution in the apex at 24 and 48 hours. Signal was most intense in the organ of Corti, spiral ligament, and spiral ganglion. Little to no fluorescence was observed at 5 days post-injection. No significant changes in auditory brainstem response (ABR) were noted post-perforation at 5 days, suggesting that siRNA-Lipofectamine at low doses does not cause cochlear toxicity. CONCLUSIONS Small volumes of siRNA and Lipofectamine can be effectively delivered to cochlear structures using microneedles, paving the way for atraumatic cochlear gene therapy.
Collapse
Affiliation(s)
| | - François Voruz
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | | | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Eugénie Breil
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Michelle Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York
| | - Lauren Chiriboga
- Department of Biomedical Engineering, Columbia University, New York, New York
| | | | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, New York
| | | |
Collapse
|
6
|
Ropri AS, Lam TG, Kalia V, Buchanan HM, Bartosch AMW, Youth EHH, Xiao H, Ross SK, Jain A, Chakrabarty JK, Kang MS, Boyett D, Spinazzi EF, Iodice G, McGovern RA, Honig LS, Brown LM, Miller GW, McKhann GM, Teich AF. Alzheimer's disease CSF biomarkers correlate with early pathology and alterations in neuronal and glial gene expression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.11.24308706. [PMID: 38947015 PMCID: PMC11213077 DOI: 10.1101/2024.06.11.24308706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early AD pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify CSF biomarkers for AD-related CNS pathophysiologic changes using tissue and fluids with early pathology, free of post-mortem artifact. METHODS We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS AD pathology on biopsy correlates with CSF β-amyloid-40/42, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/β-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights 7 core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data.. DISCUSSION As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking.
Collapse
Affiliation(s)
- Ali S. Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tiffany G. Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vrinda Kalia
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Heather M. Buchanan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anne Marie W. Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elliot H. H. Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sophie K. Ross
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anu Jain
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jayanta K. Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Min Suk Kang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Deborah Boyett
- Department of Neurosurgery, Columbia University, New York, NY 10032, USA
| | | | - Gail Iodice
- Ankyra Therapeutics, Cambridge, MA 02142, USA
| | - Robert A. McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gary W. Miller
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Guy M. McKhann
- Department of Neurosurgery, Columbia University, New York, NY 10032, USA
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, Physiologic, and Proteomic Consequences of Repeated Microneedle-Mediated Perforations of the Round Window Membrane. Hear Res 2023; 432:108739. [PMID: 36966687 DOI: 10.1016/j.heares.2023.108739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS 100-μm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 μL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 μL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.
Collapse
|
8
|
Jung JW, Li H, Lee JH, Hwang YJ, Dan K, Park MK, Han D, Suh MW. Dual viscosity mixture vehicle for intratympanic steroid treatment modifies the ROS and inflammation related proteomes. Front Pharmacol 2023; 14:1081724. [PMID: 36744248 PMCID: PMC9892634 DOI: 10.3389/fphar.2023.1081724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Until recently, the most standard treatment for sensorineural or sudden hearing loss, which is caused by inner ear damage or deterioration, has been systemic oral steroid administration. In recent, intratympanic steroid injections such as dexamethasone have been used for the treatment of sudden hearing loss as well. It is injected into the tympanic cavity through its membrane and is expected to diffuse over the round window located between the tympanic cavity and the inner ear. However, in clinical situations, the delivery time of steroids to the inner ear is shorter than 24 h, which does not allow for a sufficient therapeutic effect. Therefore, we applied a previously invented dual viscosity mixture vehicle (DVV) for intratympanic dexamethasone to a guinea pig model, which could reduce the side effects of systemic steroid administration with sufficient dwelling time for the treatment of hearing loss, and we investigated the physiological changes with a global proteomic approach. In this study, we extracted perilymph in three different conditions from guinea pigs treated with dexamethasone-embedded DVV, dexamethasone mixed in saline, and control groups to compare proteomic changes using tandem mass spectrometry analysis. After liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analysis, we first identified 46 differentially expressed proteins (DEPs) that were statistically significant after one-way ANOVA multiple-sample test. We also performed pairwise comparisons among each group to identify DEPs closely related to the treatment response of dexamethasone-embedded DVV. Gene ontology enrichment analysis showed that these DEPs were mostly related to inflammation, immune, actin remodeling, and antioxidant-related processes. As a result, the proteome changes in the DVV-treated groups revealed that most upregulated proteins activate the cell proliferation process, and downregulated proteins inhibit apoptosis and inflammatory reactions. Moreover, the reactive oxygen process was also regulated by DEPs after DVV treatment.
Collapse
Affiliation(s)
- Jin Woo Jung
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jung Hun Lee
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yu-Jung Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| |
Collapse
|
9
|
Li P, Qian T, Sun S. Spatial architecture of the cochlear immune microenvironment in noise-induced and age-related sensorineural hearing loss. Int Immunopharmacol 2023; 114:109488. [PMID: 36470117 DOI: 10.1016/j.intimp.2022.109488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The cochlea encodes sound stimuli and transmits them to the central nervous system, and damage to sensory cells and synapses in the cochlea leads to hearing loss. The inner ear was previously considered to be an immune privileged organ to protect the auditory organ from reactions with the immune system. However, recent studies have revealed the presence of resident macrophages in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis. The tissue-resident macrophages are responsible for the detection, phagocytosis, and clearance of cellular debris and pathogens from the tissues, and they initiate inflammation and influence tissue repair by producing inflammatory cytokines and chemokines. Insult to the cochlea can activate the cochlear macrophages to initiate immune responses. In this review, we describe the distribution and functions of cochlear macrophages in noise-induced hearing impairment and age-related hearing disabilities. We also focus on potential therapeutic interventions concerning hearing loss by modulating local immune responses.
Collapse
Affiliation(s)
- Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
10
|
Zhou C, Aksit A, Szeto B, Li RL, Lalwani AK, Kysar JW. Pyrolyzed Ultrasharp Glassy Carbon Microneedles. ADVANCED ENGINEERING MATERIALS 2022; 24:2270046. [PMID: 36686328 PMCID: PMC9858104 DOI: 10.1002/adem.202270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymeric microneedles fabricated via two-photon polymerization (2PP) lithography enable safe medical access to the inner ear. Herein, the material class for 2PP-lithography-based microneedles is expanded by pyrolyzing 2PP-fabricated polymeric microneedles, resulting in glassy carbon microneedles. During pyrolysis the microneedles shrink up to 81% while maintaining their complex shape when the exposed surface-area-to-volume ratio (SVR) is 0.025 < SVR < 0.04, for the temperature history protocol used herein. The derived glassy carbon is confirmed with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The pyrolyzed glassy carbon has Young's modulus 9.0 GPa. As a brittle material, the strength is stochastic. Using the two-parameter Weibull distribution, the glassy carbon has Weibull modulus of 3.1 and characteristic strength of 710 MPa. The viscoelastic response has characteristic time scale of about 10000 s. In vitro experiments demonstrate that the glassy carbon microneedles introduce controlled perforations across the guinea pig round window membrane (RWM) from the middle ear space into the inner ear, without damaging the microneedle. The resultant controlled perforation of RWM is known to enhance diffusion of therapeutics across the RWM in a predictable fashion. Hence, the glassy carbon microneedles can be deployed for mediating inner ear delivery.
Collapse
Affiliation(s)
- Chaoqun Zhou
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Betsy Szeto
- Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Richard L Li
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Anil K Lalwani
- Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA; Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Leong S, Aksit A, Feng SJ, Kysar JW, Lalwani AK. Inner Ear Diagnostics and Drug Delivery via Microneedles. J Clin Med 2022; 11:jcm11185474. [PMID: 36143121 PMCID: PMC9500619 DOI: 10.3390/jcm11185474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Precision medicine for inner ear disorders has seen significant advances in recent years. However, unreliable access to the inner ear has impeded diagnostics and therapeutic delivery. The purpose of this review is to describe the development, production, and utility of novel microneedles for intracochlear access. Methods: We summarize the current work on microneedles developed using two-photon polymerization (2PP) lithography for perforation of the round window membrane (RWM). We contextualize our findings with the existing literature in intracochlear diagnostics and delivery. Results: Two-photon polymerization lithography produces microneedles capable of perforating human and guinea pig RWMs without structural or functional damage. Solid microneedles may be used to perforate guinea pig RWMs in vivo with full reconstitution of the membrane in 48–72 h, and hollow microneedles may be used to aspirate perilymph or inject therapeutics into the inner ear. Microneedles produced with two-photon templated electrodeposition (2PTE) have greater strength and biocompatibility and may be used to perforate human RWMs. Conclusions: Microneedles produced with 2PP lithography and 2PTE can safely and reliably perforate the RWM for intracochlear access. This technology is groundbreaking and enabling in the field of inner ear precision medicine.
Collapse
Affiliation(s)
- Stephen Leong
- Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Sharon J. Feng
- Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology—Head & Neck Surgery, New-York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K. Lalwani
- Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology—Head & Neck Surgery, New-York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3319
| |
Collapse
|
12
|
Kaderbay A, Berger F, Bouamrani A, Bidart M, Petre G, Baguant A, Giraud L, Schmerber S. Perilymph metabolomic and proteomic MALDI-ToF profiling with porous silicon chips: a proof-of-concept study. Hear Res 2022; 417:108457. [DOI: 10.1016/j.heares.2022.108457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
|
13
|
Membrane curvature and connective fiber alignment in guinea pig round window membrane. Acta Biomater 2021; 136:343-362. [PMID: 34563725 DOI: 10.1016/j.actbio.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.
Collapse
|