1
|
Vaisar T, Babenko I, Horvath KV, Niisuke K, Asztalos BF. Relationships between HDL subpopulation proteome and HDL function in overweight/obese people with and without coronary heart disease. Atherosclerosis 2024; 397:118565. [PMID: 39260003 PMCID: PMC11539851 DOI: 10.1016/j.atherosclerosis.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD). METHODS We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects. We measured the relative molar concentration of HDL-associated proteins by liquid chromatography tandem mass spectrometry (LC-MS/MS) and assessed particle functionality. RESULTS We quantified 110 proteins associated with the 5 APOA1-containing HDL subpopulations. The relative molar concentration of these proteins spanned five orders of magnitude. Only 10 proteins were present in >1% while 73 were present in <0.1% concentration. Only 6 of the 10 most abundant proteins were apolipoproteins. Interestingly, the largest (α-1) and the smallest (preβ-1) HDL particles contained the most diverse proteomes. The protein composition of each HDL subpopulation was altered in CHD cases as compared to controls with the most prominent differences in preβ-1 and α-1 particles. APOA2 concentration was positively correlated with preβ-1 particle functionality (ABCA1-CEC/mg APOA1 in preβ-1) (R2 = 0.42, p = 0.005), while APOE concentration was inversely correlated with large-HDL particle functionality (SRBI-CEC/mg APOA1 in α-1+α-2) (R2 = 0.18, p = 0.01). CONCLUSIONS The protein composition of the different HDL subpopulations was altered differentially in CHD patients. The functionality of the small and large HDL particles correlated with the protein content of APOA2 and APOE, respectively. Our data indicate that distinct particle subspecies and specific particle associated proteins provide new information about the role of HDL in CHD.
Collapse
Affiliation(s)
- Tomas Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Ilona Babenko
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katalin V Horvath
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Katrin Niisuke
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Bela F Asztalos
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Maravi JSM, Leszczynski EC, Schwartz CS, Dev PK, Barber JL, Reasons RJ, Pearce RW, McPhaul MJ, Konrad RJ, Robbins JM, Gerszten RE, Collier TS, Bouchard C, Rohatgi A, Sarzynski MA. Associations of an HDL apolipoproteomic index with cardiometabolic risk factors before and after exercise training in the HERITAGE Family Study. Atherosclerosis 2024; 395:117587. [PMID: 38823353 PMCID: PMC11254543 DOI: 10.1016/j.atherosclerosis.2024.117587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND AIMS Previous studies have derived and validated an HDL apolipoproteomic score (pCAD) that predicts coronary artery disease (CAD) risk. However, the associations between pCAD and markers of cardiometabolic health in healthy adults are not known, nor are the effects of regular exercise on pCAD. METHODS A total of 641 physically inactive adults free of cardiovascular disease from the HERITAGE Family Study completed 20 weeks of exercise training. The pCAD index (range 0-100) was calculated using measurements of apolipoproteins A-I, C-I, C-II, C-III, and C-IV from ApoA-I-tagged serum (higher index = higher CAD risk). The associations between pCAD index and cardiometabolic traits at baseline and their training responses were assessed with Spearman correlation and general linear models. A Bonferroni correction of p < 8.9 × 10-04 was used to determine statistical significance. RESULTS The mean ± SD baseline pCAD index was 29 ± 32, with 106 (16.5 %) participants classified as high CAD risk. At baseline, pCAD index was positively associated with blood pressure, systemic inflammation, and body composition. HDL size, VO2max, and HDL-C were negatively associated with pCAD index at baseline. Of those classified as high CAD risk at baseline, 52 (49 %) were reclassified as normal risk after training. Following training, pCAD index changes were inversely correlated (p < 1.4 × 10-04) with changes in HDL-C, HDL size, and LDL size. CONCLUSIONS A higher pCAD index was associated with a worse cardiometabolic profile at baseline but improved with regular exercise. The results from this study highlight the potential role of HDL apolipoproteins as therapeutic targets for lifestyle interventions, particularly in high-risk individuals.
Collapse
Affiliation(s)
| | | | | | - Prasun K. Dev
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Jacob L. Barber
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
| | - Riley J. Reasons
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Ryan W. Pearce
- Quest Diagnostics Cardiometabolic Center of Excellence at Cleveland HeartLab, Cleveland, OH
| | - Michael J. McPhaul
- Quest Diagnostics Cardiometabolic Center of Excellence at Cleveland HeartLab, Cleveland, OH
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jeremy M. Robbins
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Robert E. Gerszten
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Timothy S. Collier
- Quest Diagnostics Cardiometabolic Center of Excellence at Cleveland HeartLab, Cleveland, OH
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Mark A. Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC
| |
Collapse
|
3
|
Goetze S, van Drogen A, Albinus JB, Fort KL, Gandhi T, Robbiani D, Laforte V, Reiter L, Levesque MP, Xuan Y, Wollscheid B. Simultaneous targeted and discovery-driven clinical proteotyping using hybrid-PRM/DIA. Clin Proteomics 2024; 21:26. [PMID: 38565978 PMCID: PMC10988896 DOI: 10.1186/s12014-024-09478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland.
| | - Audrey van Drogen
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Jonas B Albinus
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yue Xuan
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
4
|
Frey K, Rohrer L, Frommelt F, Ringwald M, Potapenko A, Goetze S, von Eckardstein A, Wollscheid B. Mapping the dynamic high-density lipoprotein synapse. Atherosclerosis 2023; 380:117200. [PMID: 37619408 DOI: 10.1016/j.atherosclerosis.2023.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND AIMS Heterogeneous high-density lipoprotein (HDL) particles, which can contain hundreds of proteins, affect human health and disease through dynamic molecular interactions with cell surface proteins. How HDL mediates its long-range signaling functions and interactions with various cell types is largely unknown. Due to the complexity of HDL, we hypothesize that multiple receptors engage with HDL particles resulting in condition-dependent receptor-HDL interaction clusters at the cell surface. METHODS Here we used the mass spectrometry-based and light-controlled proximity labeling strategy LUX-MS in a discovery-driven manner to decode HDL-receptor interactions. RESULTS Surfaceome nanoscale organization analysis of hepatocytes and endothelial cells using LUX-MS revealed that the previously known HDL-binding protein scavenger receptor B1 (SCRB1) is embedded in a cell surface protein community, which we term HDL synapse. Modulating the endothelial HDL synapse, composed of 60 proteins, by silencing individual members, showed that the HDL synapse can be assembled in the absence of SCRB1 and that the members are interlinked. The aminopeptidase N (AMPN) (also known as CD13) was identified as an HDL synapse member that directly influences HDL uptake into the primary human aortic endothelial cells (HAECs). CONCLUSIONS Our data indicate that preformed cell surface residing protein complexes modulate HDL function and suggest new theragnostic opportunities.
Collapse
Affiliation(s)
- Kathrin Frey
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Institute for Clinical Chemistry University Hospital Zurich, Zurich, Switzerland.
| | - Lucia Rohrer
- Institute for Clinical Chemistry University Hospital Zurich, Zurich, Switzerland
| | - Fabian Frommelt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Meret Ringwald
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Anton Potapenko
- Institute for Clinical Chemistry University Hospital Zurich, Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; ETH PHRT Swiss Multi-Omics Center (SMOC), Switzerland
| | | | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; ETH PHRT Swiss Multi-Omics Center (SMOC), Switzerland.
| |
Collapse
|
5
|
Chen JX, Li R, Geng T, Wang Y, Lu Q, Tu ZZ, Li Y, Liao YF, Yang K, Zhou LR, Tong WW, Zhou YF, Liu G, Pan A. Differences in HDL-related mortality risk between individuals with and without hypertension: a prospective cohort study in UK Biobank. Eur J Prev Cardiol 2023; 30:951-959. [PMID: 36802288 DOI: 10.1093/eurjpc/zwad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND AIMS Very high levels of high-density lipoprotein cholesterol (HDL-C) have been paradoxically linked to increased mortality risk. The present study aimed to examine associations of HDL-C and varied sizes of the HDL particle (HDL-P) with mortality risk stratified by hypertension. METHODS AND RESULTS This prospective cohort study included 429 792 participants (244 866 with hypertension and 184 926 without hypertension) from the UK Biobank. During a median follow-up of 12.7 years, 23 993 (9.8%) and 8142 (4.4%) deaths occurred among individuals with and without hypertension, respectively. A U-shaped association of HDL-C with all-cause mortality was observed in individuals with hypertension after multivariable adjustment, whereas an L-shape was observed in individuals without hypertension. Compared with individuals with normal HDL-C of 50-70 mg/dL, those with very high HDL-C levels (>90 mg/dL) had a significantly higher risk of all-cause mortality among individuals with hypertension (hazard ratio, 1.47; 95% confidence interval, 1.35-1.61), but not among those without hypertension (1.05, 0.91-1.22). As for HDL-P, among individuals with hypertension, a larger size of HDL-P was positively whereas smaller HDL-P was negatively associated with all-cause mortality. After additional adjustment for larger HDL-P in the model, the U-shaped association between HDL-C and mortality risk was altered to an L-shape among individuals with hypertension. CONCLUSIONS The increased risk of mortality associated with very high HDL-C existed only in individuals with hypertension, but not in those without hypertension. Moreover, the increased risk at high HDL-C levels in hypertension was likely driven by larger HDL-P.
Collapse
Affiliation(s)
- Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yuexuan Wang
- Department of Applied Statistics, Johannes Kepler Universität Linz, Linz, Austria
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zhou-Zheng Tu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Rong Zhou
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen-Wei Tong
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan-Feng Zhou
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
6
|
Huang C, Zhang J, Huang J, Li H, Wen K, Bao J, Wu X, Sun R, Abudukeremu A, Wang Y, He Z, Chen Q, Huang X, Wang H, Zhang Y. Proteomic and functional analysis of HDL subclasses in humans and rats: a proof-of-concept study. Lipids Health Dis 2023; 22:86. [PMID: 37386457 DOI: 10.1186/s12944-023-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/07/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The previous study investigated whether the functions of small, medium, and large high density lipoprotein (S/M/L-HDL) are correlated with protein changes in mice. Herein, the proteomic and functional analyses of high density lipoprotein (HDL) subclasses were performed in humans and rats. METHODS After purifying S/M/L-HDL subclasses from healthy humans (n = 6) and rats (n = 3) using fast protein liquid chromatography (FPLC) with calcium silica hydrate (CSH) resin, the proteomic analysis by mass spectrometry was conducted, as well as the capacities of cholesterol efflux and antioxidation was measured. RESULTS Of the 120 and 106 HDL proteins identified, 85 and 68 proteins were significantly changed in concentration among the S/M/L-HDL subclasses in humans and rats, respectively. Interestingly, it was found that the relatively abundant proteins in the small HDL (S-HDL) and large HDL (L-HDL) subclasses did not overlap, both in humans and in rats. Next, by searching for the biological functions of the relatively abundant proteins in the HDL subclasses via Gene Ontology, it was displayed that the relatively abundant proteins involved in lipid metabolism and antioxidation were enriched more in the medium HDL (M-HDL) subclass than in the S/L-HDL subclasses in humans, whereas in rats, the relatively abundant proteins associated with lipid metabolism and anti-oxidation were enriched in M/L-HDL and S/M-HDL, respectively. Finally, it was confirmed that M-HDL and L-HDL had the highest cholesterol efflux capacity among the three HDL subclasses in humans and rats, respectively; moreover, M-HDL exhibited higher antioxidative capacity than S-HDL in both humans and rats. CONCLUSIONS The S-HDL and L-HDL subclasses are likely to have different proteomic components during HDL maturation, and results from the proteomics-based comparison of the HDL subclasses may explain the associated differences in function.
Collapse
Affiliation(s)
- Canxia Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingjing Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongwei Li
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kexin Wen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinlan Bao
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Comprehensive Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoying Wu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Runlu Sun
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ayiguli Abudukeremu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Wang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhijian He
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiaofei Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyi Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong Wang
- Centers for Metabolic & Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Yuling Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China.
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Souza Junior DR, Silva ARM, Ronsein GE. Strategies for consistent and automated quantification of HDL proteome using data-independent acquisition (DIA). J Lipid Res 2023:100397. [PMID: 37286042 PMCID: PMC10339053 DOI: 10.1016/j.jlr.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023] Open
Abstract
The introduction of mass spectrometry-based proteomics has revolutionized HDL field, with the description, characterization and implication of HDL-associated proteins in an array of pathologies. However, acquiring robust, reproducible data is still a challenge in the quantitative assessment of HDL proteome. Data-independent acquisition (DIA) is a mass spectrometry methodology that allows the acquisition of reproducible data, but data analysis remains a challenge in the field. Up to date, there is no consensus in how to process DIA-derived data for HDL proteomics. Here, we developed a pipeline aiming to standardize HDL proteome quantification. We optimized instrument parameters, and compared the performance of four freely available, user-friendly software tools (DIA-NN, EncyclopeDIA, MaxDIA and Skyline) in processing DIA data. Importantly, pooled samples were used as quality controls throughout our experimental setup. A carefully evaluation of precision, linearity, and detection limits, first using E. coli background for HDL proteomics, and second using HDL proteome and synthetic peptides, was undertaken. Finally, as a proof of concept, we employed our optimized and automated pipeline to quantify the proteome of HDL and apolipoprotein B (APOB)-containing lipoproteins. Our results show that determination of precision is key to confidently and consistently quantify HDL proteins. Taking this precaution, any of the available software tested here would be appropriate for quantification of HDL proteome, although their performance varied considerably.
Collapse
Affiliation(s)
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
von Eckardstein A, Nordestgaard BG, Remaley AT, Catapano AL. High-density lipoprotein revisited: biological functions and clinical relevance. Eur Heart J 2022; 44:1394-1407. [PMID: 36337032 PMCID: PMC10119031 DOI: 10.1093/eurheartj/ehac605] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better predictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the respective disease.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich , Zurich , Switzerland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
- IRCCS MultiMedica, Sesto S. Giovanni , Milan , Italy
| |
Collapse
|
9
|
Decoding Functional High-Density Lipoprotein Particle Surfaceome Interactions. Int J Mol Sci 2022; 23:ijms23169506. [PMID: 36012766 PMCID: PMC9409371 DOI: 10.3390/ijms23169506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
High-density lipoprotein (HDL) is a mixture of complex particles mediating reverse cholesterol transport (RCT) and several cytoprotective activities. Despite its relevance for human health, many aspects of HDL-mediated lipid trafficking and cellular signaling remain elusive at the molecular level. During HDL’s journey throughout the body, its functions are mediated through interactions with cell surface receptors on different cell types. To characterize and better understand the functional interplay between HDL particles and tissue, we analyzed the surfaceome-residing receptor neighborhoods with which HDL potentially interacts. We applied a combination of chemoproteomic technologies including automated cell surface capturing (auto-CSC) and HATRIC-based ligand–receptor capturing (HATRIC-LRC) on four different cellular model systems mimicking tissues relevant for RCT. The surfaceome analysis of EA.hy926, HEPG2, foam cells, and human aortic endothelial cells (HAECs) revealed the main currently known HDL receptor scavenger receptor B1 (SCRB1), as well as 155 shared cell surface receptors representing potential HDL interaction candidates. Since vascular endothelial growth factor A (VEGF-A) was recently found as a regulatory factor of transendothelial transport of HDL, we next analyzed the VEGF-modulated surfaceome of HAEC using the auto-CSC technology. VEGF-A treatment led to the remodeling of the surfaceome of HAEC cells, including the previously reported higher surfaceome abundance of SCRB1. In total, 165 additional receptors were found on HAEC upon VEGF-A treatment representing SCRB1 co-regulated receptors potentially involved in HDL function. Using the HATRIC-LRC technology on human endothelial cells, we specifically aimed for the identification of other bona fide (co-)receptors of HDL beyond SCRB1. HATRIC-LRC enabled, next to SCRB1, the identification of the receptor tyrosine-protein kinase Mer (MERTK). Through RNA interference, we revealed its contribution to endothelial HDL binding and uptake. Furthermore, subsequent proximity ligation assays (PLAs) demonstrated the spatial vicinity of MERTK and SCRB1 on the endothelial cell surface. The data shown provide direct evidence for a complex and dynamic HDL receptome and that receptor nanoscale organization may influence binding and uptake of HDL.
Collapse
|
10
|
Sirtori CR, Corsini A, Ruscica M. The Role of High-Density Lipoprotein Cholesterol in 2022. Curr Atheroscler Rep 2022; 24:365-377. [PMID: 35274229 PMCID: PMC8913032 DOI: 10.1007/s11883-022-01012-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF THE REVIEW High-density lipoproteins (HDL) are responsible for the transport in plasma of a large fraction of circulating lipids, in part from tissue mobilization. The evaluation of HDL-associated cholesterol (HDL-C) has provided a standard method for assessing cardiovascular (CV) risk, as supported by many contributions on the mechanism of this arterial benefit. The present review article will attempt to investigate novel findings on the role and mechanism of HDL in CV risk determination. RECENT FINDINGS The most recent research has been aimed to the understanding of how a raised functional capacity of HDL, rather than elevated levels per se, may be responsible for the postulated CV protection. Markedly elevated HDL-C levels appear instead to be associated to a raised coronary risk, indicative of a U-shaped relationship. While HDL-C reduction is definitely related to a raised CV risk, HDL-C elevations may be linked to non-vascular diseases, such as age-related macular disease. The description of anti-inflammatory, anti-oxidative and anti-infectious properties has indicated potential newer areas for diagnostic and therapeutic approaches. In the last two decades inconclusive data have arisen from clinical trials attempting to increase HDL-C pharmacologically or by way of recombinant protein infusions (most frequently with the mutant A-I Milano); prevention of stent occlusion or heart failure treatment have shown instead significant promise. Targeted clinical studies are still ongoing.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
11
|
Frey K, von Eckardstein A. HDL, heart disease, and the lung. J Lipid Res 2022; 63:100217. [PMID: 35487261 PMCID: PMC9131245 DOI: 10.1016/j.jlr.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathrin Frey
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland
| | - Arnold von Eckardstein
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland,.
| |
Collapse
|
12
|
Liu Y. A peptidoform based proteomic strategy for studying functions of post-translational modifications. Proteomics 2022; 22:e2100316. [PMID: 34878717 PMCID: PMC8959388 DOI: 10.1002/pmic.202100316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Protein post-translational modifications (PTMs) generate an enormous, but as yet undetermined, expansion of the produced proteoforms. In this Viewpoint, we firstly reviewed the concepts of proteoform and peptidoform. We show that many of the current PTM biological investigation and annotation studies largely follow a PTM site-specific rather than proteoform-specific approach. We further illustrate a potentially useful matching strategy in which a particular "modified peptidoform" is matched to the corresponding "unmodified peptidoform" as a reference for the quantitative analysis between samples and conditions. We suggest this strategy has the potential to provide more directly relevant information to learn the PTM site-specific biological functions. Accordingly, we advocate for the wider use of the nomenclature "peptidoform" in future bottom-up proteomic studies.
Collapse
Affiliation(s)
- Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA,Department of Pharmacology, Yale University, School of Medicine, New Haven, CT 06520, USA,Corresponding author:
| |
Collapse
|