1
|
Loroch S, Panagiotidis E, Klewe K, Swieringa F, Heemskerk JWM, Lerch JP, Greinacher A, Walter U, Jurk K, John T, Barkovits K, Dandekar T, Marcus K, Balkenhol J. Middle-throughput LC-MS-based Platelet Proteomics with Minute Sample Amounts Using Semiautomated Positive Pressure FASP in 384-Well Format. Thromb Haemost 2025. [PMID: 39814053 DOI: 10.1055/a-2516-1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Comprehensive characterization of platelets requires various functional assays and analytical techniques, including omics disciplines, each demanding a separate aliquot of the given sample. Consequently, sample material for each assay is often highly limited, necessitating the downscaling of methods to work with just a few micrograms of platelet protein.Here, we present a novel sample preparation platform for proteomics analysis using only 3 μg of purified platelet protein, corresponding to 2 × 106 platelets, which can be obtained from approximately 2 to 8 μL of blood from a healthy individual (1.5 × 105-4.5 × 105 platelets/μL) or approximately 100 μL of blood from a patient with severe thrombocytopenia (<2 × 104 platelets/µL).Using this platform, we detected a significant fraction of key players in the platelet activation cascade and, most importantly, identified 36 clinically relevant platelet disease markers even with a non-state-of-the art instrument. This makes LC-MS-based proteomics a highly attractive alternative to conventional assays, which often require milliliters of blood. Our platform transitions from our previously established 96-well proteomics workflow (PF96), which has been successfully employed in numerous platelet proteomics studies, into the 384-well format. This transition is accompanied by (1) a more than two-fold increase in sensitivity, (2) improved reproducibility, (3) a four-fold increase in throughput, allowing 1,536 samples to be processed per lab worker per week, and (4) reduced sample preparation costs.Thus, LC-MS-based platelet proteomics offers a compelling alternative to immunoaffinity assays (which depend on antibody availability and quality), as well as to genomic assays (which can only reveal genotypes). In summary, in conjunction with recent advances in LC-MS instrumentation, our platform represents a highly valuable tool for rapid phenotyping of platelets in research with extraordinary potential for future employment in companion or routine diagnostics.
Collapse
Affiliation(s)
- Stefan Loroch
- Medical Proteome-Center (MPC), Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Fa. Dr. Loroch/QC|MS, Biomedizin Zentrum, Dortmund, Dortmund, Germany
- Department of Bioanalytics, Leibniz-Institute for Analytical Sciences - ISAS - e.V., Dortmund Germany
| | - Eleftherios Panagiotidis
- Department of Bioanalytics, Leibniz-Institute for Analytical Sciences - ISAS - e.V., Dortmund Germany
| | - Kristoffer Klewe
- Fa. Dr. Loroch/QC|MS, Biomedizin Zentrum, Dortmund, Dortmund, Germany
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Platelet Pathophysiology, Maastricht, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Platelet Pathophysiology, Maastricht, the Netherlands
| | - Jan-Paul Lerch
- Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), Univeristy Medical Center Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), Univeristy Medical Center Mainz, Mainz, Germany
| | - Tobias John
- Medical Proteome-Center (MPC), Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Katalin Barkovits
- Medical Proteome-Center (MPC), Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katrin Marcus
- Medical Proteome-Center (MPC), Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Johannes Balkenhol
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Ott F, Körner C, Krohn K, Fischer J, Damm G, Seehofer D, Berg T, Matz-Soja M. Impact of Hedgehog modulators on signaling pathways in primary murine and human hepatocytes in vitro: insights into liver metabolism. Arch Toxicol 2025; 99:1105-1116. [PMID: 39714734 PMCID: PMC11821798 DOI: 10.1007/s00204-024-03931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway. As a result, the Hh pathway has emerged as a promising target for therapeutic intervention. However, little is known about the effects of Hh modulators on healthy hepatocytes. In our study, we investigated the effects of the Hh agonists SAG (300 nM) and triamcinolone acetonide (40 µM), as well as the antagonists RU-SKI 43 (100 nM), cyclopamine (5 µM), budesonide (25 µM), GANT61 (0.5 µM), and vismodegib (1 µM) on healthy mouse and human primary hepatocytes in vitro. We employed toxicological, transcriptomic, proteomic, and functional assays, including proliferation and Seahorse assays. Our results show that these compounds significantly impact metabolic pathways such as lipid and glucose metabolism at both transcriptional and protein levels. Mechanistically, our data suggest the involvement of both canonical and non-canonical Hedgehog pathways, a phenomenon not previously described in hepatocytes. These findings highlight the diverse effects of these compounds on signaling and key metabolic functions in the liver, which emphasizes the need to investigate the hepatic Hh cascade and its metabolic control in depth. As the compounds regulate different aspects of metabolism, they need to be carefully studied in appropriate model systems for specific therapeutic use.
Collapse
Affiliation(s)
- Fritzi Ott
- Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Christiane Körner
- Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Leipzig University, Leipzig, Germany
| | - Janett Fischer
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
- Saxon Incubator for Clinical Translation (SIKT), Leipzig University, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Thomas Berg
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Madlen Matz-Soja
- Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany.
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Jacquemin C, El Orch W, Diaz O, Lalande A, Aublin-Gex A, Jacolin F, Toesca J, Si-Tahar M, Mathieu C, Lotteau V, Perrin-Cocon L, Vidalain PO. Pharmacological induction of the hypoxia response pathway in Huh7 hepatoma cells limits proliferation but increases resilience under metabolic stress. Cell Mol Life Sci 2024; 81:320. [PMID: 39078527 PMCID: PMC11335246 DOI: 10.1007/s00018-024-05361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
The hypoxia response pathway enables adaptation to oxygen deprivation. It is mediated by hypoxia-inducible factors (HIF), which promote metabolic reprogramming, erythropoiesis, angiogenesis and tissue remodeling. This led to the successful development of HIF-inducing drugs for treating anemia and some of these molecules are now in clinic. However, elevated levels of HIFs are frequently associated with tumor growth, poor prognosis, and drug resistance in various cancers, including hepatocellular carcinoma (HCC). Consequently, there are concerns regarding the recommendation of HIF-inducing drugs in certain clinical situations. Here, we analyzed the effects of two HIF-inducing drugs, Molidustat and Roxadustat, in the well-characterized HCC cell line Huh7. These drugs increased HIF-1α and HIF-2α protein levels which both participate in inducing hypoxia response genes such as BNIP3, SERPINE1, LDHA or EPO. Combined transcriptomics, proteomics and metabolomics showed that Molidustat increased the expression of glycolytic enzymes, while the mitochondrial network was fragmented and cellular respiration decreased. This metabolic remodeling was associated with a reduced proliferation and a lower demand for pyrimidine supply, but an increased ability of cells to convert pyruvate to lactate. This was accompanied by a higher resistance to the inhibition of mitochondrial respiration by antimycin A, a phenotype confirmed in Roxadustat-treated Huh7 cells and Molidustat-treated hepatoblastoma cells (Huh6 and HepG2). Overall, this study shows that HIF-inducing drugs increase the metabolic resilience of liver cancer cells to metabolic stressors, arguing for careful monitoring of patients treated with HIF-inducing drugs, especially when they are at risk of liver cancer.
Collapse
Affiliation(s)
- Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Walid El Orch
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Alexandre Lalande
- CIRI, Centre International de Recherche en Infectiologie, Team NeuroInvasion, Tropism and Viral Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Johan Toesca
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Mustapha Si-Tahar
- Centre d'Etude des Pathologies Respiratoires (CEPR), Faculty of Medecine, Inserm, U1100, 37000, Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Team NeuroInvasion, Tropism and Viral Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
- Laboratoire P4 INSERM-Jean Mérieux, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France.
| |
Collapse
|
4
|
Murfuni MS, Prestagiacomo LE, Giuliano A, Gabriele C, Signoretti S, Cuda G, Gaspari M. Evaluation of PAC and FASP Performance: DIA-Based Quantitative Proteomic Analysis. Int J Mol Sci 2024; 25:5141. [PMID: 38791181 PMCID: PMC11121386 DOI: 10.3390/ijms25105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to compare filter-aided sample preparation (FASP) and protein aggregation capture (PAC) starting from a three-species protein mix (Human, Soybean and Pisum sativum) and two different starting amounts (1 and 10 µg). Peptide mixtures were analyzed by data-independent acquisition (DIA) and raw files were processed by three commonly used software: Spectronaut, MaxDIA and DIA-NN. Overall, the highest number of proteins (mean value of 5491) were identified by PAC (10 µg), while the lowest number (4855) was identified by FASP (1 µg). The latter experiment displayed the worst performance in terms of both specificity (0.73) and precision (0.24). Other tested conditions showed better diagnostic accuracy, with specificity values of 0.95-0.99 and precision values between 0.61 and 0.86. In order to provide guidance on the data analysis pipeline, the accuracy diagnostic of three software was investigated: (i) the highest sensitivity was obtained with Spectronaut (median of 0.67) highlighting the ability of Spectronaut to quantify low-abundance proteins, (ii) the best precision value was obtained by MaxDIA (median of 0.84), but with a reduced number of identifications compared to Spectronaut and DIA-NN data, and (iii) the specificity values were similar (between 0.93 and 0.99). The data are available on ProteomeXchange with the identifier PXD044349.
Collapse
|
5
|
Nickerson JL, Gagnon H, Wentzell PD, Doucette AA. Assessing the precision of a detergent-assisted cartridge precipitation workflow for non-targeted quantitative proteomics. Proteomics 2024; 24:e2300339. [PMID: 38299459 DOI: 10.1002/pmic.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS. The variance of data-independent acquisition (SWATH-MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS-assisted cartridge workflow yield a coefficient of variance (CV) of 13%-14%. By comparison, conventional (detergent-free) in-solution digestion increased the CV to 50%; in-gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent-based precipitation workflow is a reliable approach for in depth, label-free quantitative proteome analysis.
Collapse
Affiliation(s)
| | - Hugo Gagnon
- PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada
| | - Peter D Wentzell
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Xavier D, Lucas N, Williams SG, Koh JMS, Ashman K, Loudon C, Reddel R, Hains PG, Robinson PJ. Heat 'n Beat: A Universal High-Throughput End-to-End Proteomics Sample Processing Platform in under an Hour. Anal Chem 2024; 96:4093-4102. [PMID: 38427620 DOI: 10.1021/acs.analchem.3c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.
Collapse
Affiliation(s)
- Dylan Xavier
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Natasha Lucas
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Steven G Williams
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jennifer M S Koh
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Keith Ashman
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Clare Loudon
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Roger Reddel
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Peter G Hains
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Phillip J Robinson
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Bowser BL, Robinson RAS. Enhanced Multiplexing Technology for Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:379-400. [PMID: 36854207 DOI: 10.1146/annurev-anchem-091622-092353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of thousands of proteins and their relative levels of expression has furthered understanding of biological processes and disease and stimulated new systems biology hypotheses. Quantitative proteomics workflows that rely on analytical assays such as mass spectrometry have facilitated high-throughput measurements of proteins partially due to multiplexing. Multiplexing allows proteome differences across multiple samples to be measured simultaneously, resulting in more accurate quantitation, increased statistical robustness, reduced analysis times, and lower experimental costs. The number of samples that can be multiplexed has evolved from as few as two to more than 50, with studies involving more than 10 samples being denoted as enhanced multiplexing or hyperplexing. In this review, we give an update on emerging multiplexing proteomics techniques and highlight advantages and limitations for enhanced multiplexing strategies.
Collapse
Affiliation(s)
- Bailey L Bowser
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA;
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Memory and Alzheimer's Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Solari FA, Krahn D, Swieringa F, Verhelst S, Rassaf T, Tasdogan A, Zahedi RP, Lorenz K, Renné T, Heemskerk JWM, Sickmann A. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol 2023; 73:102253. [PMID: 36689818 DOI: 10.1016/j.cbpa.2022.102253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 01/22/2023]
Abstract
Platelets are small anucleate cell fragments (2-4 μm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Daniel Krahn
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, 6217 KD, Maastricht, the Netherlands
| | - Steven Verhelst
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - Tienush Rassaf
- Clinic for Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Rene P Zahedi
- Department of Internal Medicine, University of Manitoba, Canada
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Renné
- Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
9
|
Bottom-Up Proteomics: Advancements in Sample Preparation. Int J Mol Sci 2023; 24:ijms24065350. [PMID: 36982423 PMCID: PMC10049050 DOI: 10.3390/ijms24065350] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based proteomics is a powerful technique for profiling proteomes of cells, tissues, and body fluids. Typical bottom-up proteomic workflows consist of the following three major steps: sample preparation, LC–MS/MS analysis, and data analysis. LC–MS/MS and data analysis techniques have been intensively developed, whereas sample preparation, a laborious process, remains a difficult task and the main challenge in different applications. Sample preparation is a crucial stage that affects the overall efficiency of a proteomic study; however, it is prone to errors and has low reproducibility and throughput. In-solution digestion and filter-aided sample preparation are the typical and widely used methods. In the past decade, novel methods to improve and facilitate the entire sample preparation process or integrate sample preparation and fractionation have been reported to reduce time, increase throughput, and improve reproducibility. In this review, we have outlined the current methods used for sample preparation in proteomics, including on-membrane digestion, bead-based digestion, immobilized enzymatic digestion, and suspension trapping. Additionally, we have summarized and discussed current devices and methods for integrating different steps of sample preparation and peptide fractionation.
Collapse
|
10
|
Quality Control—A Stepchild in Quantitative Proteomics: A Case Study for the Human CSF Proteome. Biomolecules 2023; 13:biom13030491. [PMID: 36979426 PMCID: PMC10046854 DOI: 10.3390/biom13030491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Proteomic studies using mass spectrometry (MS)-based quantification are a main approach to the discovery of new biomarkers. However, a number of analytical conditions in front and during MS data acquisition can affect the accuracy of the obtained outcome. Therefore, comprehensive quality assessment of the acquired data plays a central role in quantitative proteomics, though, due to the immense complexity of MS data, it is often neglected. Here, we address practically the quality assessment of quantitative MS data, describing key steps for the evaluation, including the levels of raw data, identification and quantification. With this, four independent datasets from cerebrospinal fluid, an important biofluid for neurodegenerative disease biomarker studies, were assessed, demonstrating that sample processing-based differences are already reflected at all three levels but with varying impacts on the quality of the quantitative data. Specifically, we provide guidance to critically interpret the quality of MS data for quantitative proteomics. Moreover, we provide the free and open source quality control tool MaCProQC, enabling systematic, rapid and uncomplicated data comparison of raw data, identification and feature detection levels through defined quality metrics and a step-by-step quality control workflow.
Collapse
|