1
|
Burroughs RW, Percival CJ, Vitek NS. Reduced Dietary Protein Induces Changes in the Dental Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632248. [PMID: 39868298 PMCID: PMC11761009 DOI: 10.1101/2025.01.13.632248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction. Determining the identity of those mechanisms and the relative importance of each of them is one of the main challenges to understanding phenotypic plasticity. Quantitative proteomics combined with experimental studies allow for the identification of potential molecular contributors to a plastic response through quantification of expressed gene products. Here, we present the results of a quantitative proteomics analysis of mature upper first molars (M1s) in Mus musculus from a controlled feeding experiment. Pregnant and nursing mothers were fed either a low-dietary protein (10%) treatment diet or control (20%) diet. Expression of tooth-related proteins, immune system proteins, and actin-based myosin proteins were significantly altered in our low-dietary protein sample. The recovery of expression change in tooth development proteins was anticipated and consistent with previous proteomic studies. We also identified differential immune protein response along with systematic reduction in actin-based myosin protein expression, which are novel discoveries for tooth proteomics studies. We propose that studies which aim to elucidate specific mechanisms of molar phenotypic plasticity should prioritize investigations into the relationships between IGF regulation and tooth development and actin-based myosin expression and tooth development. Research Highlights A low-protein diet during development results in significantly altered protein expression for major dental building proteins, immune system proteins, and actin-based myosin proteins within Mus musculus .
Collapse
|
2
|
Fabrizi I, Flament S, Delhon C, Gourichon L, Vuillien M, Oueslati T, Auguste P, Rolando C, Bray F. Low-Invasive Sampling Method with Tape-Disc Sampling for the Taxonomic Identification of Archeological and Paleontological Bones by Proteomics. J Proteome Res 2024; 23:3404-3417. [PMID: 39042361 DOI: 10.1021/acs.jproteome.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Collagen from paleontological bones is an important organic material for isotopic measurement, radiocarbon analysis, and paleoproteomic analysis to provide information on diet, dating, taxonomy, and phylogeny. Current paleoproteomic methods are destructive and require from a few milligrams to several tens of milligrams of bone for analysis. In many cultures, bones are raw materials for artifacts that are conserved in museums, which hampers damage to these precious objects during sampling. Here, we describe a low-invasive sampling method that identifies collagen, taxonomy, and post-translational modifications from Holocene and Upper Pleistocene bones dated to 130,000 and 150 BC using dermatological skin tape discs for sampling. The sampled bone micropowders were digested following our highly optimized enhanced filter-aided sample preparation protocol and then analyzed by MALDI FTICR MS and LC-MS/MS for identifying the genus taxa of the bones. We show that this low-invasive sampling does not deteriorate the bones and achieves results similar to those obtained by more destructive sampling. Moreover, this sampling method can be carried out at archeological sites or in museums.
Collapse
Affiliation(s)
- Isabelle Fabrizi
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| | - Stéphanie Flament
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| | - Claire Delhon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Lionel Gourichon
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Manon Vuillien
- Université Côte d'Azur, CNRS, CEPAM (UMR 7264), Nice F-06300, France
| | - Tarek Oueslati
- Univ. Lille, CNRS UMR 8164─HALMA─Histoire, Archéologie et Littérature des Mondes Anciens, Lille F-59000, France
| | - Patrick Auguste
- Univ. Lille, CNRS UMR 8198─EEP─Evolution, Ecology and Paleontology, Lille F-59000, France
| | - Christian Rolando
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
- Shrieking Sixties, Villeneuve d'Ascq F-59650, France
| | - Fabrice Bray
- Univ. Lille, CNRS UAR 3290─MSAP─Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille F-59000, France
| |
Collapse
|
3
|
Bray F, Fabrizi I, Flament S, Locht JL, Antoine P, Auguste P, Rolando C. Robust High-Throughput Proteomics Identification and Deamidation Quantitation of Extinct Species up to Pleistocene with Ultrahigh-Resolution MALDI-FTICR Mass Spectrometry. Anal Chem 2023; 95:7422-7432. [PMID: 37130053 DOI: 10.1021/acs.analchem.2c03301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Peptide mass fingerprinting (PMF) using MALDI-TOF mass spectrometry allows the identification of bone species based on their type I collagen sequence. In the archaeological or paleontological field, PMF is known as zooarchaeology mass spectrometry (ZooMS) and is widely implemented to find markers for most species, including the extinct ones. In addition to the identification of bone species, ZooMS enables dating estimation by measuring the deamidation value of specific peptides. Herein, we report several enhancements to the classical ZooMS technique, which reduces to 10-fold the required bone sample amount (down to the milligram scale) and achieves robust deamidation value calculation in a high-throughput manner. These improvements rely on a 96-well plate samples preparation, a careful optimization of collagen extraction and digestion to avoid spurious post-translational modification production, and PMF at high resolution using matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) analysis. This method was applied to the identification of a hundred bones of herbivores from the Middle Paleolithic site of Caours (Somme, France) well dated from the Eemian Last Interglacial climatic optimum. The method gave reliable species identification to bones already identified by their osteomorphology, as well as to more challenging samples consisting of small or burned bone fragments. Deamidation values of bones originating from the same geological layers have a low standard deviation. The method can be applied to archaeological bone remains and offers a robust capacity to identify traditionally unidentifiable bone fragments, thus increasing the number of identified specimens and providing invaluable information in specific contexts.
Collapse
Affiliation(s)
- Fabrice Bray
- Univ. Lille, CNRS, UAR 3290─MSAP - Miniaturisation pour La Synthèse, L'Analyse et La Protéomique, Lille F-59000, France
| | - Isabelle Fabrizi
- Univ. Lille, CNRS, UAR 3290─MSAP - Miniaturisation pour La Synthèse, L'Analyse et La Protéomique, Lille F-59000, France
| | - Stéphanie Flament
- Univ. Lille, CNRS, UAR 3290─MSAP - Miniaturisation pour La Synthèse, L'Analyse et La Protéomique, Lille F-59000, France
| | - Jean-Luc Locht
- Inrap Hauts-de-France, 32, avenue de l'Étoile-du-Sud, Glisy 80440, France
- Univ. Paris I & UPEC, CNRS, UMR 8591, Laboratoire de Géographie Physique, Environnements quaternaires et actuels, Thiais F-94230, France
| | - Pierre Antoine
- Univ. Paris I & UPEC, CNRS, UMR 8591, Laboratoire de Géographie Physique, Environnements quaternaires et actuels, Thiais F-94230, France
| | - Patrick Auguste
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paléo, Lille F-59000, France
| | - Christian Rolando
- Univ. Lille, CNRS, UAR 3290─MSAP - Miniaturisation pour La Synthèse, L'Analyse et La Protéomique, Lille F-59000, France
- Shrieking Sixties, 1-3 Allée Lavoisier, Villeneuve-d'Ascq F-59650, France
| |
Collapse
|
4
|
The quest for a generic bird target to detect the presence of bird in food products and considerations for paleoprotein analysis. PLoS One 2022; 17:e0279369. [PMID: 36538508 PMCID: PMC9767367 DOI: 10.1371/journal.pone.0279369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
It can be important for consumers to know whether food products contain animal material and, if so, of which species. Food products with animal material as an ingredient often contain collagen type 1. LC-MS/MS (Liquid Chromatography-tandem Mass Spectrometry) was applied as technique to generically detect bird. Unlike for example fish, that have experienced longer divergence times, it is still possible to find generic LC-MS targets for avian type 1 collagen. After theoretical target selection using 83 collagen 1α2 bird sequences of 33 orders and construction of a common ancestor sequence of birds, experimental evidence was provided by analyzing extracts from 10 extant bird species. Two suitable options have been identified. The combination of VGPIGPAGNR and VGPIGAAGNR (pheasant only) covers all investigated birds and was not found in other species. The peptide EGPVGFpGADGR covers all investigated birds, but also occurs in several species of crocodiles and turtles. The presence of the generic peptide (combination) was confirmed in food products, proving the principle, and can therefore be used to detect the presence of bird. Furthermore, it is shown how the use of constructed ancestor sequences could benefit the field of paleoproteomics, in the interpretation of collagen MS/MS spectra of ancient species. Our theoretical analysis and assessment of reported Brachylophosaurus canadensis collagen 1α2 MS/MS data provided support for several previous peptide sequence assignments, but we also propose that our constructed ancestral bird sequence GPpGESGAVGPAGPIGSR may fit the MS/MS data better than the original assignment GLPGESGAVGPAGPpGSR.
Collapse
|
5
|
Torres JM, Borja C, Gibert L, Ribot F, Olivares EG. Twentieth-Century Paleoproteomics: Lessons from Venta Micena Fossils. BIOLOGY 2022; 11:1184. [PMID: 36009810 PMCID: PMC9404968 DOI: 10.3390/biology11081184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Proteomics methods can identify amino acid sequences in fossil proteins, thus making it possible to determine the ascription or proximity of a fossil to other species. Before mass spectrometry was used to study fossil proteins, earlier studies used antibodies to recognize their sequences. Lowenstein and colleagues, at the University of San Francisco, pioneered the identification of fossil proteins with immunological methods. His group, together with Olivares's group at the University of Granada, studied the immunological reactions of proteins from the controversial Orce skull fragment (VM-0), a 1.3-million-year-old fossil found at the Venta Micena site in Orce (Granada province, southern Spain) and initially assigned to a hominin. However, discrepancies regarding the morphological features of the internal face of the fossil raised doubts about this ascription. In this article, we review the immunological analysis of the proteins extracted from VM-0 and other Venta Micena fossils assigned to hominins and to other mammals, and explain how these methods helped to determine the species specificity of these fossils and resolve paleontological controversies.
Collapse
Affiliation(s)
- Jesús M. Torres
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18016 Granada, Spain; (J.M.T.); (C.B.)
| | - Concepción Borja
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18016 Granada, Spain; (J.M.T.); (C.B.)
| | - Luis Gibert
- Departament de Geoquímica, Petrologia i Prospecció Geològica, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Francesc Ribot
- Museo de Prehistoria y Paleontología Josep Gibert, 18858 Orce, Spain;
| | - Enrique G. Olivares
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18016 Granada, Spain; (J.M.T.); (C.B.)
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, 18100 Armilla, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
6
|
Taphonomic and Diagenetic Pathways to Protein Preservation, Part II: The Case of Brachylophosaurus canadensis Specimen MOR 2598. BIOLOGY 2022; 11:biology11081177. [PMID: 36009804 PMCID: PMC9404959 DOI: 10.3390/biology11081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Reports of the recovery of proteins and other molecules from fossils have become so common over the last two decades that some paleontologists now focus almost entirely on studying how biologic molecules can persist in fossils. In this study, we explored the fossilization history of a specimen of the hadrosaurid dinosaur Brachylophosaurus which was previously shown to preserve original cells, tissues, and structural proteins. Trace element analyses of the tibia of this specimen revealed that after its bones were buried in a brackish estuarine channel, they fossilized under wet conditions which shifted in redox state multiple times. The successful recovery of proteins from this specimen, despite this complex history of chemical alterations, shows that the processes which bind and stabilize biologic molecules shortly after death provide them remarkable physical and chemical resiliency. By uniting our results with those of similar studies on other dinosaur fossils known to also preserve original proteins, we also conclude that exposure to oxidizing conditions in the initial ~48 h postmortem likely promotes molecular stabilization reactions, and the retention of early-diagenetic trace element signatures may be a useful proxy for molecular recovery potential. Abstract Recent recoveries of peptide sequences from two Cretaceous dinosaur bones require paleontologists to rethink traditional notions about how fossilization occurs. As part of this shifting paradigm, several research groups have recently begun attempting to characterize biomolecular decay and stabilization pathways in diverse paleoenvironmental and diagenetic settings. To advance these efforts, we assessed the taphonomic and geochemical history of Brachylophosaurus canadensis specimen MOR 2598, the left femur of which was previously found to retain endogenous cells, tissues, and structural proteins. Combined stratigraphic and trace element data show that after brief fluvial transport, this articulated hind limb was buried in a sandy, likely-brackish, estuarine channel. During early diagenesis, percolating groundwaters stagnated within the bones, forming reducing internal microenvironments. Recent exposure and weathering also caused the surficial leaching of trace elements from the specimen. Despite these shifting redox regimes, proteins within the bones were able to survive through diagenesis, attesting to their remarkable resiliency over geologic time. Synthesizing our findings with other recent studies reveals that oxidizing conditions in the initial ~48 h postmortem likely promote molecular stabilization reactions and that the retention of early-diagenetic trace element signatures may be a useful proxy for molecular recovery potential.
Collapse
|
7
|
Soft Tissue and Biomolecular Preservation in Vertebrate Fossils from Glauconitic, Shallow Marine Sediments of the Hornerstown Formation, Edelman Fossil Park, New Jersey. BIOLOGY 2022; 11:biology11081161. [PMID: 36009787 PMCID: PMC9405258 DOI: 10.3390/biology11081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Endogenous biomolecules and soft tissues are known to persist in the fossil record. To date, these discoveries derive from a limited number of preservational environments, (e.g., fluvial channels and floodplains), and fossils from less common depositional environments have been largely unexplored. We conducted paleomolecular analyses of shallow marine vertebrate fossils from the Cretaceous–Paleogene Hornerstown Formation, an 80–90% glauconitic greensand from Jean and Ric Edelman Fossil Park in Mantua Township, NJ. Twelve samples were demineralized and found to yield products morphologically consistent with vertebrate osteocytes, blood vessels, and bone matrix. Specimens from these deposits that are dark in color exhibit excellent histological preservation and yielded a greater recovery of cells and soft tissues, whereas lighter-colored specimens exhibit poor histology and few to no cells/soft tissues. Additionally, a well-preserved femur of the marine crocodilian Thoracosaurus was found to have retained endogenous collagen I by immunofluorescence and enzyme-linked immunosorbent assays. Our results thus not only corroborate previous findings that soft tissue and biomolecular recovery from fossils preserved in marine environments are possible but also expand the range of depositional environments documented to preserve endogenous biomolecules, thus broadening the suite of geologic strata that may be fruitful to examine in future paleomolecular studies.
Collapse
|
8
|
Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus schrani, an Exceptionally Complete Titanosaur from Argentina. BIOLOGY 2022; 11:biology11081158. [PMID: 36009785 PMCID: PMC9404821 DOI: 10.3390/biology11081158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/22/2022]
Abstract
Evidence that organic material preserves in deep time (>1 Ma) has been reported using a wide variety of analytical techniques. However, the comprehensive geochemical data that could aid in building robust hypotheses for how soft-tissues persist over millions of years are lacking from most paleomolecular reports. Here, we analyze the molecular preservation and taphonomic history of the Dreadnougtus schrani holotype (MPM-PV 1156) at both macroscopic and microscopic levels. We review the stratigraphy, depositional setting, and physical taphonomy of the D. schrani skeletal assemblage, and extensively characterize the preservation and taphonomic history of the humerus at a micro-scale via: (1) histological analysis (structural integrity) and X-ray diffraction (exogenous mineral content); (2) laser ablation-inductively coupled plasma mass spectrometry (analyses of rare earth element content throughout cortex); (3) demineralization and optical microscopy (soft-tissue microstructures); (4) in situ and in-solution immunological assays (presence of endogenous protein). Our data show the D. schrani holotype preserves soft-tissue microstructures and remnants of endogenous bone protein. Further, it was exposed to LREE-enriched groundwaters and weakly-oxidizing conditions after burial, but experienced negligible further chemical alteration after early-diagenetic fossilization. These findings support previous hypotheses that fossils that display low trace element uptake are favorable targets for paleomolecular analyses.
Collapse
|