1
|
Zuo C, Zhu J, Zou J, Chen L. Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data. Clin Transl Med 2025; 15:e70331. [PMID: 40341789 PMCID: PMC12059211 DOI: 10.1002/ctm2.70331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies. KEY POINTS: Advancements in spatial multi-omics facilitate our understanding of tumour spatiotemporal heterogeneity. AI-driven multimodal models uncover complex molecular interactions that underlie cellular behaviours and tissue dynamics. Combining multi-omics technologies and AI-enabled bioinformatics tools helps predict critical disease stages, such as pre-cancer, advancing precision medicine, and informing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chunman Zuo
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Junchao Zhu
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Jiawei Zou
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesChinese Academy of SciencesHangzhouChina
- West China Biomedical Big Data Center, Med‐X Center for InformaticsWest China HospitalSichuan UniversityChengduChina
- School of Mathematical Sciences and School of AIShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
2
|
Fang H, Rai A, Eslami SS, Huynh K, Liao HC, Salim A, Greening DW. Proteomics and Machine Learning-Based Approach to Decipher Subcellular Proteome of Mouse Heart. Mol Cell Proteomics 2025; 24:100952. [PMID: 40113211 PMCID: PMC12019842 DOI: 10.1016/j.mcpro.2025.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
Protein compartmentalization to distinctive subcellular niches is critical for cardiac function and homeostasis. Here, we employed a rapid and robust workflow based on differential centrifugal-based fractionation with mass spectrometry-based proteomics and bioinformatic analyses for systemic mapping of the subcellular proteome of mouse heart. Using supervised machine learning of 450 hallmark protein markers from 16 subcellular niches, we further refined the subcellular information of 2083 proteins with high confidence. Our data validation focused on specific subcellular niches such as mitochondria, cell surface, cardiac dyad, myofibril, and nuclear, unfolding dominant subcellular localization of proteins in their native environment of mouse heart. We further provide targeted nuclear enrichment and co-immunoprecipitation-based proteomic validation from the heart of nuclear-localizing protein networks. This study provides novel insights into the molecular landscape of different subcellular niches of the heart and serves as a draft map for heart subcellular proteome.
Collapse
Affiliation(s)
- Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Seyed Sadegh Eslami
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Hsiao-Chi Liao
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
3
|
Xiao H, Zou Y, Wang J, Wan S. A Review for Artificial Intelligence Based Protein Subcellular Localization. Biomolecules 2024; 14:409. [PMID: 38672426 PMCID: PMC11048326 DOI: 10.3390/biom14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and Alzheimer's disease. Knowing where a target protein resides within a cell will give insights into tailored drug design for a disease. As the gold validation standard, the conventional wet lab uses fluorescent microscopy imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein subcellular location identification. However, the booming era of proteomics and high-throughput sequencing generates tons of newly discovered proteins, making protein subcellular localization by wet-lab experiments a mission impossible. To tackle this concern, in the past decades, artificial intelligence (AI) and machine learning (ML), especially deep learning methods, have made significant progress in this research area. In this article, we review the latest advances in AI-based method development in three typical types of approaches, including sequence-based, knowledge-based, and image-based methods. We also elaborately discuss existing challenges and future directions in AI-based method development in this research field.
Collapse
Affiliation(s)
- Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yijin Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
4
|
Wang B, Zhang X, Han X, Hao B, Li Y, Guo X. TransGCN: a semi-supervised graph convolution network-based framework to infer protein translocations in spatio-temporal proteomics. Brief Bioinform 2024; 25:bbae055. [PMID: 38426320 PMCID: PMC10939423 DOI: 10.1093/bib/bbae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Protein subcellular localization (PSL) is very important in order to understand its functions, and its movement between subcellular niches within cells plays fundamental roles in biological process regulation. Mass spectrometry-based spatio-temporal proteomics technologies can help provide new insights of protein translocation, but bring the challenge in identifying reliable protein translocation events due to the noise interference and insufficient data mining. We propose a semi-supervised graph convolution network (GCN)-based framework termed TransGCN that infers protein translocation events from spatio-temporal proteomics. Based on expanded multiple distance features and joint graph representations of proteins, TransGCN utilizes the semi-supervised GCN to enable effective knowledge transfer from proteins with known PSLs for predicting protein localization and translocation. Our results demonstrate that TransGCN outperforms current state-of-the-art methods in identifying protein translocations, especially in coping with batch effects. It also exhibited excellent predictive accuracy in PSL prediction. TransGCN is freely available on GitHub at https://github.com/XuejiangGuo/TransGCN.
Collapse
Affiliation(s)
- Bing Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiangzheng Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Xudong Han
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Bingjie Hao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, China
| | - Xuejiang Guo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|