1
|
Ridder MD, van den Brandeler W, Altiner M, Daran-Lapujade P, Pabst M. Proteome dynamics during transition from exponential to stationary phase under aerobic and anaerobic conditions in yeast. Mol Cell Proteomics 2023; 22:100552. [PMID: 37076048 DOI: 10.1016/j.mcpro.2023.100552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a promising cell factory for industry. However, despite decades of research, the regulation of its metabolism is not yet fully understood, and its complexity represents a major challenge for engineering and optimising biosynthetic routes. Recent studies have demonstrated the potential of resource and proteomic allocation data in enhancing models for metabolic processes. However, comprehensive and accurate proteome dynamics data that can be used for such approaches are still very limited. Therefore, we performed a quantitative proteome dynamics study to comprehensively cover the transition from exponential to stationary phase for both aerobically and anaerobically grown yeast cells. The combination of highly controlled reactor experiments, biological replicates and standardised sample preparation procedures ensured reproducibility and accuracy. Additionally, we selected the CEN.PK lineage for our experiments because of its relevance for both fundamental and applied research. Together with the prototrophic, standard haploid strain CEN.PK113-7D, we also investigated an engineered strain with genetic minimisation of the glycolytic pathway, resulting in the quantitative assessment of 54 proteomes. The anaerobic cultures showed remarkably less proteome-level changes compared to the aerobic cultures, during transition from the exponential to the stationary phase as a consequence of the lack of the diauxic shift in the absence of oxygen. These results support the notion that anaerobically growing cells lack resources to adequately adapt to starvation. This proteome dynamics study constitutes an important step towards better understanding of the impact of glucose exhaustion and oxygen on the complex proteome allocation process in yeast. Finally, the established proteome dynamics data provide a valuable resource for the development of resource allocation models as well as for metabolic engineering efforts.
Collapse
Affiliation(s)
- Maxime den Ridder
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiebeke van den Brandeler
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Meryem Altiner
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Martin Pabst
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
2
|
Litsios A, Goswami P, Terpstra HM, Coffin C, Vuillemenot LA, Rovetta M, Ghazal G, Guerra P, Buczak K, Schmidt A, Tollis S, Tyers M, Royer CA, Milias-Argeitis A, Heinemann M. The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor. Mol Biol Cell 2022; 33:rp2. [PMID: 35482514 PMCID: PMC9282015 DOI: 10.1091/mbc.e21-07-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Pooja Goswami
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Hanna M Terpstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Carleton Coffin
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Luc-Alban Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Mattia Rovetta
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ghada Ghazal
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Sylvain Tollis
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada.,Institute of Biomedicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Catherine A Royer
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
3
|
A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications. J Proteomics 2022; 261:104576. [DOI: 10.1016/j.jprot.2022.104576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
|
4
|
Arico DS, Beati P, Wengier DL, Mazzella MA. A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:592. [PMID: 34906086 PMCID: PMC8670200 DOI: 10.1186/s12870-021-03377-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. RESULTS In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. CONCLUSIONS This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.
Collapse
Affiliation(s)
- Denise S Arico
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
| | - Paula Beati
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
| | - Diego L Wengier
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
| | - Maria Agustina Mazzella
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina.
| |
Collapse
|
5
|
Abe Y, Tada A, Isoyama J, Nagayama S, Yao R, Adachi J, Tomonaga T. Improved phosphoproteomic analysis for phosphosignaling and active-kinome profiling in Matrigel-embedded spheroids and patient-derived organoids. Sci Rep 2018; 8:11401. [PMID: 30061712 PMCID: PMC6065387 DOI: 10.1038/s41598-018-29837-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
Many attempts have been made to reproduce the three-dimensional (3D) cancer behavior. For that purpose, Matrigel, an extracellular matrix from Engelbreth-Holm-Swarm mouse sarcoma cell, is widely used in 3D cancer models such as scaffold-based spheroids and patient-derived organoids. However, severe ion suppression caused by contaminants from Matrigel hampers large-scale phosphoproteomics. In the present study, we successfully performed global phosphoproteomics from Matrigel-embedded spheroids and organoids. Using acetone precipitations of tryptic peptides, we identified more than 20,000 class 1 phosphosites from HCT116 spheroids. Bioinformatic analysis revealed that phosphoproteomic status are significantly affected by the method used for the recovery from the Matrigel, i.e., Dispase or Cell Recovery Solution. Furthermore, we observed the activation of several phosphosignalings only in spheroids and not in adherent cells which are coincident with previous study using 3D culture. Finally, we demonstrated that our protocol enabled us to identify more than 20,000 and nearly 3,000 class 1 phosphosites from 1.4 mg and 150 μg of patient-derived organoid, respectively. Additionally, we were able to quantify phosphosites with high reproducibility (r = 0.93 to 0.95). Our phosphoproteomics protocol is useful for analyzing the phosphosignalings of 3D cancer behavior and would be applied for precision medicine with patient-derived organoids.
Collapse
Affiliation(s)
- Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Asa Tada
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 135-8550, Tokyo, Japan
| | - Ryoji Yao
- Division of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 135-8550, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan. .,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
6
|
Cabral T, Toral MA, Velez G, DiCarlo JE, Gore AM, Mahajan M, Tsang SH, Bassuk AG, Mahajan VB. Dissection of Human Retina and RPE-Choroid for Proteomic Analysis. J Vis Exp 2017. [PMID: 29155757 DOI: 10.3791/56203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human retina is composed of the sensory neuroretina and the underlying retinal pigmented epithelium (RPE), which is firmly complexed to the vascular choroid layer. Different regions of the retina are anatomically and molecularly distinct, facilitating unique functions and demonstrating differential susceptibility to disease. Proteomic analysis of each of these regions and layers can provide vital insights into the molecular process of many diseases, including Age-Related Macular Degeneration (AMD), diabetes mellitus, and glaucoma. However, separation of retinal regions and layers is essential before quantitative proteomic analysis can be accomplished. Here, we describe a method for dissection and collection of the foveal, macular, and peripheral retinal regions and underlying RPE-choroid complex, involving regional punch biopsies and manual removal of tissue layers from a human eye.One-dimensional SDS-PAGE as well as downstream proteomic analysis, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), can be used to identify proteins in each dissected retinal layer, revealing molecular biomarkers for retinal disease.
Collapse
Affiliation(s)
- Thiago Cabral
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital; Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP); Department of Ophthalmology, Federal University of EspÍrito Santo (UFES)
| | - Marcus A Toral
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University; Medical Scientist Training Program, University of Iowa
| | - Gabriel Velez
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University; Medical Scientist Training Program, University of Iowa
| | - James E DiCarlo
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital
| | - Anuradha M Gore
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University
| | - MaryAnn Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University
| | - Stephen H Tsang
- Barbara & Donald Jonas Stem Cell Laboratory, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa; Department of Neurology, University of Iowa
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University; Palo Alto Veterans Administration, Palo Alto, CA;
| |
Collapse
|
7
|
Kanshin E, Giguère S, Jing C, Tyers M, Thibault P. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates. Mol Cell Proteomics 2017; 16:786-798. [PMID: 28265048 PMCID: PMC5417821 DOI: 10.1074/mcp.m116.066233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry allows quantification of tens of thousands of phosphorylation sites from minute amounts of cellular material. Despite this wealth of information, our understanding of phosphorylation-based signaling is limited, in part because it is not possible to deconvolute substrate phosphorylation that is directly mediated by a particular kinase versus phosphorylation that is mediated by downstream kinases. Here, we describe a framework for assignment of direct in vivo kinase substrates using a combination of selective chemical inhibition, quantitative phosphoproteomics, and machine learning techniques. Our workflow allows classification of phosphorylation events following inhibition of an analog-sensitive kinase into kinase-independent effects of the inhibitor, direct effects on cognate substrates, and indirect effects mediated by downstream kinases or phosphatases. We applied this method to identify many direct targets of Cdc28 and Snf1 kinases in the budding yeast Saccharomyces cerevisiae Global phosphoproteome analysis of acute time-series demonstrated that dephosphorylation of direct kinase substrates occurs more rapidly compared with indirect substrates, both after inhibitor treatment and under a physiological nutrient shift in wt cells. Mutagenesis experiments revealed a high proportion of functionally relevant phosphorylation sites on Snf1 targets. For example, Snf1 itself was inhibited through autophosphorylation on Ser391 and new phosphosites were discovered that modulate the activity of the Reg1 regulatory subunit of the Glc7 phosphatase and the Gal83 β-subunit of SNF1 complex. This methodology applies to any kinase for which a functional analog sensitive version can be constructed to facilitate the dissection of the global phosphorylation network.
Collapse
Affiliation(s)
- Evgeny Kanshin
- From the ‡Institute for Research in Immunology and Cancer
| | | | - Cheng Jing
- From the ‡Institute for Research in Immunology and Cancer
| | - Mike Tyers
- From the ‡Institute for Research in Immunology and Cancer,
- §Department of Medicine
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer,
- ¶Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
8
|
von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 2016; 12:469-87. [PMID: 26400465 PMCID: PMC4819829 DOI: 10.1586/14789450.2015.1078730] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.
Collapse
Affiliation(s)
- Louise von Stechow
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
9
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|