1
|
Dark and bright side of targeting fibroblast growth factor receptor 4 in the liver. J Hepatol 2021; 75:1440-1451. [PMID: 34364916 DOI: 10.1016/j.jhep.2021.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) and its cognate ligand, FGF19, are implicated in a range of cellular processes, including differentiation, metabolism and proliferation. Indeed, their aberrant activation has been associated with the development of hepatic tumours. Despite great advances in early diagnosis and the development of new therapies, liver cancer is still associated with a high mortality rate, owing primarily to high molecular heterogeneity and unclear molecular targeting. The development of FGFR4 inhibitors is a promising tool in patients with concomitant supraphysiological levels of FGF19 and several clinical trials are testing these treatments for patients with advanced hepatocellular carcinoma (HCC). Conversely, using FGF19 analogues to activate FGFR4-KLOTHO β represents a novel therapeutic strategy in patients presenting with cholestatic liver disorders and non-alcoholic steatohepatitis, which could potentially prevent the development of metabolic HCC. Herein, we provide an overview of the currently available therapeutic options for targeting FGFR4 in HCC and other liver diseases, highlighting the need to carefully stratify patients and personalise therapeutic strategies.
Collapse
|
2
|
Liu YQ, Zou HY, Xie JJ, Fang WK. Paradoxical Roles of Desmosomal Components in Head and Neck Cancer. Biomolecules 2021; 11:914. [PMID: 34203070 PMCID: PMC8234459 DOI: 10.3390/biom11060914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent studies have reported that the abnormal expression of various desmosomal components correlates with tumor progression and poor survival. In addition, desmosomes have been shown to act as a signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied by abnormal expression of desmosomal components and loss of desmosome structure. However, the role of desmosomal components in the progression of HNC remains controversial. This review aims to provide an overview of recent developments showing the paradoxical roles of desmosomal components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Sá JDO, Trino LD, Oliveira AK, Lopes AFB, Granato DC, Normando AGC, Santos ES, Neves LX, Carnielli CM, Paes Leme AF. Proteomic approaches to assist in diagnosis and prognosis of oral cancer. Expert Rev Proteomics 2021; 18:261-284. [PMID: 33945368 DOI: 10.1080/14789450.2021.1924685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Oral squamous cell carcinoma (OSCC) ranks among the top 10 leading causes of cancer worldwide, with 5-year survival rate of about 50%, high lymph node metastasis, and relapse rates. The OSCC diagnosis, prognosis, and treatment are mostly based on the clinical TNM classification. There is an urgent need for the discovery of biomarkers and therapeutic targets to assist in the clinical decision-making process.Areas covered: We summarize proteomic studies of the OSCC tumor, immune microenvironment, potential liquid biopsy sites, and post-translational modifications trying to retrieve information in the discovery and verification or (pre)validation phases. The search strategy was based on the combination of MeSH terms and expert refinement.Expert opinion: Untargeted combined with targeted proteomics are strategies that provide reliable and reproducible quantitation of proteins and are the methods of choice of many groups worldwide. Undoubtedly, proteomics has been contributing to the understanding of OSCC progression and uncovers potential candidates as biomarker or therapeutic targets. Nevertheless, none of these targets are available in the clinical practice yet. The scientific community needs to overcome the limitations by investing in robust experimental designs to strengthen the value of the findings, leveraging the translation of knowledge, and further supporting clinical decisions.
Collapse
Affiliation(s)
- Jamile De Oliveira Sá
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Luciana Daniele Trino
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ariane Fidelis Busso Lopes
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Ana Gabriela Costa Normando
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Erison Santana Santos
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil.,Departamento De Diagnóstico Oral, Faculdade De Odontologia De Piracicaba, Universidade Estadual De Campinas (UNICAMP), Piracicaba, Brazil
| | - Leandro Xavier Neves
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional De Biociências (Lnbio), Centro Nacional De Pesquisa Em Energia E Materiais (CNPEM), Campinas, Brazil
| |
Collapse
|
4
|
Hagiwara S, Sasaki E, Hasegawa Y, Suzuki H, Nishikawa D, Beppu S, Terada H, Sawabe M, Takahashi M, Hanai N. Serum CD109 levels reflect the node metastasis status in head and neck squamous cell carcinoma. Cancer Med 2021; 10:1335-1346. [PMID: 33565282 PMCID: PMC7926025 DOI: 10.1002/cam4.3737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Various biomarkers are being developed for the early diagnosis of cancer and for predicting its prognosis. The aim of this study is to evaluate the diagnostic significance of serum CD109 in head and neck squamous cell carcinoma (HNSCC). Methods The serum CD109 levels in a total of 112 serum samples collected before and after surgery from 56 HNSCC patients were analyzed with an enzyme‐linked immunosorbent assay (ELISA). The clinical factor that showed a statistically significant association with both the preoperative serum CD109 level, and the CD109 index: which was defined as the ratio of the preoperative serum CD109 level to the postoperative serum CD109 level, were assessed. The correlations between the serum CD109 levels and lymph node density (LND), pathological features such as lymphatic invasion, and serum SCC antigen levels were also assessed. Results The ELISA measurement revealed that preoperative serum CD109 levels were elevated in patients with node metastasis‐positive and stage IV disease, in comparison to those with node metastasis‐negative and Stage I+II+III disease, respectively. A multiple regression analysis indicated that serum CD109 level was significantly associated with the node metastasis status. A Spearman's rank correlation analysis also revealed a positive correlation between the preoperative serum CD109 level and LND. Furthermore, the probabilities of the overall and relapse‐free survival were significantly lower in patients with a preoperative serum CD109 level of ≥38.0 ng/ml and a CD109 index of ≥1.6, respectively, than in others. There was no significant correlation between the serum CD109 and SCC antigen levels. Conclusions The serum CD109 levels were elevated in patients with advanced stage disease, reflecting the node metastasis status. CD109 in sera could be a novel prognostic marker for HNSCC involving lymph node metastasis.
Collapse
Affiliation(s)
- Sumitaka Hagiwara
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery - Otolaryngology, Asahi University Hospital, Gifu, Japan
| | - Hidenori Suzuki
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Daisuke Nishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Shintaro Beppu
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hoshino Terada
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Michi Sawabe
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
5
|
Liu Y, Cao M, Cai Y, Li X, Zhao C, Cui R. Dissecting the Role of the FGF19-FGFR4 Signaling Pathway in Cancer Development and Progression. Front Cell Dev Biol 2020; 8:95. [PMID: 32154250 PMCID: PMC7044267 DOI: 10.3389/fcell.2020.00095] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) belongs to a family of tyrosine kinase receptor. FGFR4 is highly activated in certain types of cancer and its activation is closely associated with its specific ligand, FGF19. Indeed, FGF19-FGFR4 signaling is implicated in many cellular processes including cell proliferation, migration, metabolism, and differentiation. Since active FGF19-FGFR4 signaling acts as an oncogenic pathway in certain types of cancer, the development and therapeutic evaluation of FGFR4-specific inhibitors in cancer patients is a topic of significant interest. In this review, we aim to provide an updated overview of currently-available FGFR4 inhibitors and their ongoing clinical trials, as well as upcoming potential therapeutics. Further, we examined the possibility of enhancing the therapeutic efficiency of FGFR4 inhibitors in cancer patients. We also discussed the underlying molecular mechanisms of oncogenic activation of FGFR4 by FGF19.
Collapse
Affiliation(s)
- Yanan Liu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng Cao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
6
|
Mii S, Enomoto A, Shiraki Y, Taki T, Murakumo Y, Takahashi M. CD109: a multifunctional GPI‐anchored protein with key roles in tumor progression and physiological homeostasis. Pathol Int 2019; 69:249-259. [DOI: 10.1111/pin.12798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shinji Mii
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
| | - Atsushi Enomoto
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
| | - Yukihiro Shiraki
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of Medicine Nagoya Japan
| | - Tetsuro Taki
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshiki Murakumo
- Department of PathologyKitasato University School of Medicine Sagamihara Japan
| | - Masahide Takahashi
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
7
|
Fibroblast Growth Factor Receptor 4 Targeting in Cancer: New Insights into Mechanisms and Therapeutic Strategies. Cells 2019; 8:cells8010031. [PMID: 30634399 PMCID: PMC6356571 DOI: 10.3390/cells8010031] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4), a tyrosine kinase receptor for FGFs, is involved in diverse cellular processes, including the regulation of cell proliferation, differentiation, migration, metabolism, and bile acid biosynthesis. High activation of FGFR4 is strongly associated with the amplification of its specific ligand FGF19 in many types of solid tumors and hematologic malignancies, where it acts as an oncogene driving the cancer development and progression. Currently, the development and therapeutic evaluation of FGFR4-specific inhibitors, such as BLU9931 and H3B-6527, in animal models and cancer patients, are paving the way to suppress hyperactive FGFR4 signaling in cancer. This comprehensive review not only covers the recent discoveries in understanding FGFR4 regulation and function in cancer, but also reveals the therapeutic implications and applications regarding emerging anti-FGFR4 agents. Our aim is to pinpoint the potential of FGFR4 as a therapeutic target and identify new avenues for advancing future research in the field.
Collapse
|
8
|
Simicevic J, Deplancke B. Transcription factor proteomics-Tools, applications, and challenges. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jovan Simicevic
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics; Lausanne Switzerland
- LimmaTech Biologics AG; Schlieren Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics; Lausanne Switzerland
| |
Collapse
|
9
|
Paik YK, Omenn GS, Overall CM, Deutsch EW, Hancock WS. Recent Advances in the Chromosome-Centric Human Proteome Project: Missing Proteins in the Spot Light. J Proteome Res 2016; 14:3409-14. [PMID: 26337862 DOI: 10.1021/acs.jproteome.5b00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Gilbert S Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan 48109, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Eric W Deutsch
- Institute for Systems Biology , Seattle, Washington 98109, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - William S Hancock
- Department of Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
10
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Repana D, Ross P. Targeting FGF19/FGFR4 Pathway: A Novel Therapeutic Strategy for Hepatocellular Carcinoma. Diseases 2015; 3:294-305. [PMID: 28943626 PMCID: PMC5548263 DOI: 10.3390/diseases3040294] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal cancer with limited systemic therapeutic options. Liver carcinogenesis is a complex procedure and various pathways have been found to be deregulated which are potential targets for novel treatments. Aberrant signalling through FGF19 and its receptor FGFR4 seems to be the oncogenic driver for a subset of HCCs and is associated with poor prognosis. Inhibition of the pathway in preclinical models has shown antitumour activity and has triggered further evaluation of this strategy to in vivo models. This review aims to describe the role of the FGF19/FGFR4 pathway in hepatocellular carcinoma and its role as a potential predictive biomarker for novel targeted agents against FGF19/FGFR4 signalling.
Collapse
Affiliation(s)
- Dimitra Repana
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, SE1 9RT London, UK.
| | - Paul Ross
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, SE1 9RT London, UK.
- Department of Oncology, King's College Hospital, SE19 1RT London, UK.
| |
Collapse
|