1
|
Kärkkäinen O, Tolmunen T, Kivimäki P, Kurkinen K, Ali-Sisto T, Mäntyselkä P, Valkonen-Korhonen M, Koivumaa-Honkanen H, Honkalampi K, Ruusunen A, Velagapudi V, Lehto SM. Alcohol use-associated alterations in the circulating metabolite profile in the general population and in individuals with major depressive disorder. Alcohol 2024; 120:161-167. [PMID: 38278499 DOI: 10.1016/j.alcohol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Our aim was to evaluate whether alcohol use is associated with changes in the circulating metabolite profile similar to those present in persons with depression. If so, these findings could partially explain the link between alcohol use and depression. We applied a targeted liquid chromatography mass spectrometry method to evaluate correlates between concentrations of 86 circulating metabolites and self-reported alcohol use in a cohort of the non-depressed general population (GP) (n = 247) and a cohort of individuals with major depressive disorder (MDD) (n = 99). Alcohol use was associated with alterations in circulating concentrations of metabolites in both cohorts. Our main finding was that self-reported alcohol use was negatively correlated with serum concentrations of hippuric acid in the GP cohort. In the GP cohort, consumption of six or more doses per week was associated with low hippuric acid concentrations, similar to those observed in the MDD cohort, but in these individuals it was regardless of their level of alcohol use. Reduced serum concentrations of hippuric acid suggest that already-moderate alcohol use is associated with depression-like changes in the serum levels of metabolites associated with gut microbiota and liver function; this may be one possible molecular level link between alcohol use and depression.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Tommi Tolmunen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Adolescent Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Petri Kivimäki
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; City of Helsinki, Vuosaari Outpatient Psychiatry Clinic. Postal address: P.O. Box 6250, FI-00099 City of Helsinki, Helsinki, Finland
| | - Karoliina Kurkinen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Toni Ali-Sisto
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pekka Mäntyselkä
- Clinical Research and Trials Centre, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Minna Valkonen-Korhonen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Heli Koivumaa-Honkanen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kirsi Honkalampi
- School of Educational Sciences and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Anu Ruusunen
- Clinical Research and Trials Centre, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, VIC 3220, Australia
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, P.O. Box 20, FI-00014 University of Helsinki, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway; Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 20, FI-00014 Helsinki, Finland
| |
Collapse
|
2
|
Dai Y, Wang J, Yang Y, Jin H, Liu F, Liu H, Ho PC, Lin HS. Exploration of Nutraceutical Potentials of Isorhapontigenin, Oxyresveratrol and Pterostilbene: A Metabolomic Approach. Int J Mol Sci 2024; 25:11027. [PMID: 39456808 PMCID: PMC11507072 DOI: 10.3390/ijms252011027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Resveratrol (trans-3,5,4'-trihydroxystilbene, RES) is one of the most well-known natural products with numerous health benefits. To explore the nutraceutical potentials of some dietary RES derivatives including isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), oxyresveratrol (trans-3,5,2',4'-tetrahydroxystilbene, OXY) and pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene, PTS), their impacts on metabolism and health were assessed in Sprague Dawley rats after a two-week daily oral administration at the dose of 100 µmol/kg/day. Non-targeted metabolomic analyses were carried out with the liver, heart, brain and plasma samples using gas chromatography-tandem mass spectrometry (GC-MS/MS). Notable in vivo health benefits were observed, as the rats received ISO, PTS or RES showed less body weight gain; the rats received OXY or RES displayed healthier fasting blood glucose levels; while all of the tested stilbenes exhibited cholesterol-lowering effects. Additionally, many important metabolic pathways such as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle and fatty acid oxidation were found to be modulated by the tested stilbenes. Besides the reaffirmation of the well-known beneficial effects of RES in diabetes, obesity, cardiovascular disease and Alzheimer's disease, the metabolomic analyses also suggest the anti-diabetic, cardio-, hepato- and neuro-protective activities of ISO; the anti-diabetic, cardio-, hepato- and neuro-protective effects of OXY; and the anti-aging, anti-inflammatory, cardio-, hepato- and neuro-protective potential of PTS. Interestingly, although these stilbenes share a similar structure, their biological activities appear to be distinct. In conclusion, similarly to RES, ISO, OXY and PTS have emerged as promising candidates for further nutraceutical development.
Collapse
Affiliation(s)
- Yu Dai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongrui Jin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Feng Liu
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Hui Liu
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Paul C. Ho
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Hai-Shu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
3
|
Pasqualette L, Fidalgo TKDS, Freitas-Fernandes LB, Souza GGL, Imbiriba LA, Lobo LA, Volchan E, Domingues RMCP, Valente AP, Miranda KR. Alterations in Vagal Tone Are Associated with Changes in the Gut Microbiota of Adults with Anxiety and Depression Symptoms: Analysis of Fecal Metabolite Profiles. Metabolites 2024; 14:450. [PMID: 39195546 DOI: 10.3390/metabo14080450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Accumulating evidence suggests that interactions between the brain and gut microbiota significantly impact brain function and mental health. In the present study, we aimed to investigate whether young, healthy adults without psychiatric diagnoses exhibit differences in metabolic stool and microbiota profiles based on depression/anxiety scores and heart rate variability (HRV) parameters. Untargeted nuclear magnetic resonance-based metabolomics was used to identify fecal metabolic profiles. Results were subjected to multivariate analysis through principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), and the metabolites were identified through VIP score. Metabolites separating asymptomatic and symptomatic groups were acetate, valine, and glutamate, followed by sugar regions, glutamine, acetone, valerate, and acetoacetate. The main metabolites identified in high vagal tone (HVT) and low vagal tone (LVT) groups were acetate, valerate, and glutamate, followed by propionate and butyrate. In addition to the metabolites identified by the PLS-DA test, significant differences in aspartate, sarcosine, malate, and methionine were observed between the groups. Levels of acetoacetate were higher in both symptomatic and LVT groups. Valerate levels were significantly increased in the symptomatic group, while isovalerate, propionate, glutamate, and acetone levels were significantly increased in the LVT group. Furthermore, distinct abundance between groups was only confirmed for the Firmicutes phylum. Differences between participants with high and low vagal tone suggest that certain metabolites are involved in communication between the vagus nerve and the brain.
Collapse
Affiliation(s)
- Laura Pasqualette
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Developmental and Educational Psychology, University of Bremen, 28359 Bremen, Germany
| | - Tatiana Kelly da Silva Fidalgo
- Pediatric Dentistry, Department of Preventive and Community Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Liana Bastos Freitas-Fernandes
- National Centre of Nuclear Magnetic Resonance/CENABIO, Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela Guerra Leal Souza
- Laboratory of Psychophysiology, Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luís Aureliano Imbiriba
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Leandro Araujo Lobo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Volchan
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Ana Paula Valente
- National Centre of Nuclear Magnetic Resonance/CENABIO, Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Karla Rodrigues Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
4
|
La Torre D, Van Oudenhove L, Vanuytsel T, Verbeke K. Psychosocial stress-induced intestinal permeability in healthy humans: What is the evidence? Neurobiol Stress 2023; 27:100579. [PMID: 37842017 PMCID: PMC10569989 DOI: 10.1016/j.ynstr.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
An impaired intestinal barrier function can be detrimental to the host as it may allow the translocation of luminal antigens and toxins into the subepithelial tissue and bloodstream. In turn, this may cause local and systemic immune responses and lead to the development of pathologies. In vitro and animal studies strongly suggest that psychosocial stress is one of the factors that can increase intestinal permeability via mast-cell dependent mechanisms. Remarkably, studies have not been able to yield unequivocal evidence that such relation between stress and intestinal permeability also exists in (healthy) humans. In the current Review, we discuss the mechanisms that are involved in stress-induced intestinal permeability changes and postulate factors that influence these alterations and that may explain the translational difficulties from in vitro and animal to human studies. As human research differs highly from animal research in the extent to which stress can be applied and intestinal permeability can be measured, it remains difficult to draw conclusions about the presence of a relation between stress and intestinal permeability in (healthy) humans. Future studies should bear in mind these difficulties, and more research into in vivo methods to assess intestinal permeability are warranted.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Tim Vanuytsel
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Uhde M, Indart AC, Green PH, Yolken RH, Cook DB, Shukla SK, Vernon SD, Alaedini A. Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun Health 2023; 30:100627. [PMID: 37396339 PMCID: PMC10308215 DOI: 10.1016/j.bbih.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
The etiology and mechanism of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are poorly understood and no biomarkers have been established. Specifically, the relationship between the immunologic, metabolic, and gastrointestinal abnormalities associated with ME/CFS and their relevance to established symptoms of the condition remain unclear. Relying on data from two independent pairs of ME/CFS and control cohorts, one at rest and one undergoing an exercise challenge, we identify a state of suppressed acute-phase innate immune response to microbial translocation in conjunction with a compromised gut epithelium in ME/CFS. This immunosuppression, along with observed enhancement of compensatory antibody responses to counter the microbial translocation, was associated with and may be mediated by alterations in glucose and citrate metabolism and an IL-10 immunoregulatory response. Our findings provide novel insights into mechanistic pathways, biomarkers, and potential therapeutic targets in ME/CFS, including in the context of exertion, with relevance to both intestinal and extra-intestinal symptoms.
Collapse
Affiliation(s)
- Melanie Uhde
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Alyssa C. Indart
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Peter H.R. Green
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
| | - Robert H. Yolken
- The Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, Baltimore, MD, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay K. Shukla
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | | | - Armin Alaedini
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
6
|
Hou P, Wang D, Lang H, Yao Y, Zhou J, Zhou M, Zhu J, Yi L, Mi M. Dihydromyricetin Attenuates High-Intensity Exercise-Induced Intestinal Barrier Dysfunction Associated with the Modulation of the Phenotype of Intestinal Intraepithelial Lymphocytes. Int J Mol Sci 2022; 24:ijms24010221. [PMID: 36613665 PMCID: PMC9820179 DOI: 10.3390/ijms24010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Exercise-induced gastrointestinal syndrome (GIS) has symptoms commonly induced by strenuous sports. The study aimed to determine the effect of dihydromyricetin (DHM) administration on high-intensity exercise (HIE)-induced intestinal barrier dysfunction and the underlying mechanism involved with intestinal intraepithelial lymphocytes (IELs). METHODS The HIE model was established with male C57BL/6 mice using a motorized treadmill for 2 weeks, and DHM was given once a day by oral gavage. After being sacrificed, the small intestines of the mice were removed immediately. RESULTS We found that DHM administration significantly suppressed HIE-induced intestinal inflammation, improved intestinal barrier integrity, and inhibited a HIE-induced increase in the number of IELs and the frequency of CD8αα+ IELs. Meanwhile, several markers associated with the activation, gut homing and immune functions of CD8αα+ IELs were regulated by DHM. Mechanistically, luciferase reporter assay and molecular docking assay showed DHM could activate the aryl hydrocarbon receptor (AhR). CONCLUSIONS These data indicate that DHM exerts a preventive effect against HIE-induced intestinal barrier dysfunction, which is associated with the modulation of the quantity and phenotype of IELs in the small intestine. The findings provide a foundation to identify novel preventive strategies based on DHM supplementation for HIE-induced GIS.
Collapse
Affiliation(s)
- Pengfei Hou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dawei Wang
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hedong Lang
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yu Yao
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jie Zhou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Min Zhou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Long Yi
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mantian Mi
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
- Correspondence: ; Tel.: +86-23-6877-1549
| |
Collapse
|
7
|
Wiley JW, Higgins GA, Hong S. Chronic psychological stress alters gene expression in rat colon epithelial cells promoting chromatin remodeling, barrier dysfunction and inflammation. PeerJ 2022; 10:e13287. [PMID: 35509963 PMCID: PMC9059753 DOI: 10.7717/peerj.13287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4 and down-regulated genes including Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network enrichment analysis were inflammation/immune response, tissue morphogenesis and development, and nucleosome/chromatin assembly. The most significantly down-regulated process was the digestive system development/function, whereas the most significantly up-regulated processes were inflammatory response, organismal injury, and chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation of stressed rats demonstrated very significantly altered gene expression and transcript isoforms, enriched for the differential expression of genes involved in the inflammatory response, including upregulation of cytokine and chemokine receptor gene expression coupled with downregulation of epithelial adherens and tight junction mRNAs. In summary, these findings support that chronic stress is associated with increased levels of cytokines and chemokines, their downstream signaling pathways coupled to dysregulation of intestinal cell development and function. Epigenetic regulation of chromatin remodeling likely plays a prominent role in this process. Results also suggest that super enhancers play a primary role in chronic stress-associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| |
Collapse
|
8
|
Chantler S, Griffiths A, Matu J, Davison G, Holliday A, Jones B. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS One 2022; 17:e0266379. [PMID: 35417467 PMCID: PMC9007357 DOI: 10.1371/journal.pone.0266379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition strategies and supplements may have a role to play in diminishing exercise associated gastrointestinal cell damage and permeability. The aim of this systematic review was to determine the influence of dietary supplements on markers of exercise-induced gut endothelial cell damage and/or permeability. Five databases were searched through to February 2021. Studies were selected that evaluated indirect markers of gut endothelial cell damage and permeability in response to exercise with and without a specified supplement, including with and without water. Acute and chronic supplementation protocols were included. Twenty-seven studies were included. The studies investigated a wide range of supplements including bovine colostrum, glutamine, probiotics, supplemental carbohydrate and protein, nitrate or nitrate precursors and water across a variety of endurance exercise protocols. The majority of studies using bovine colostrum and glutamine demonstrated a reduction in selected markers of gut cell damage and permeability compared to placebo conditions. Carbohydrate intake before and during exercise and maintaining euhydration may partially mitigate gut damage and permeability but coincide with other performance nutrition strategies. Single strain probiotic strains showed some positive findings, but the results are likely strain, dosage and duration specific. Bovine colostrum, glutamine, carbohydrate supplementation and maintaining euhydration may reduce exercise-associated endothelial damage and improve gut permeability. In spite of a large heterogeneity across the selected studies, appropriate inclusion of different nutrition strategies could mitigate the initial phases of gastrointestinal cell disturbances in athletes associated with exercise. However, research is needed to clarify if this will contribute to improved athlete gastrointestinal and performance outcomes.
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Yorkshire Carnegie Rugby Union Club, Leeds, United Kingdom
| | - Alex Griffiths
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Adrian Holliday
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom
- England Performance Unit, Rugby Football League, Leeds, United Kingdom
| |
Collapse
|
9
|
Karl JP, Margolis LM, Fallowfield JL, Child RB, Martin NM, McClung JP. Military nutrition research: Contemporary issues, state of the science and future directions. Eur J Sport Sci 2021; 22:87-98. [PMID: 33980120 DOI: 10.1080/17461391.2021.1930192] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The importance of diet and nutrition to military readiness and performance has been recognized for centuries as dietary nutrients sustain health, protect against illness, and promote resilience, performance and recovery. Contemporary military nutrition research is increasingly inter-disciplinary with emphasis often placed on the broad topics of (1) determining operational nutrition requirements in all environments, (2) characterizing nutritional practices of military personnel relative to the required (role/environment) standards, and (3) developing strategies for improving nutrient delivery and individual choices. This review discusses contemporary issues shared internationally by military nutrition research programmes, and highlights emerging topics likely to influence future military nutrition research and policy. Contemporary issues include improving the diet quality of military personnel, optimizing operational rations, and increasing understanding of biological factors influencing nutrient requirements. Emerging areas include the burgeoning field of precision nutrition and its technological enablers.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Joanne L Fallowfield
- Environmental Medicine and Science Division, Institute of Naval Medicine, Alverstoke, Hampshire, UK
| | - Robert B Child
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicola M Martin
- New Zealand Army, New Zealand Defence Force, Upper Hutt, New Zealand
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
10
|
Chantler S, Griffiths A, Matu J, Davison G, Jones B, Deighton K. The Effects of Exercise on Indirect Markers of Gut Damage and Permeability: A Systematic Review and Meta-analysis. Sports Med 2021; 51:113-124. [PMID: 33201454 PMCID: PMC7806566 DOI: 10.1007/s40279-020-01348-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Exercise appears to cause damage to the endothelial lining of the human gastrointestinal tract and elicit a significant increase in gut permeability. OBJECTIVE The aim of this review was to determine the effect of an acute bout of exercise on gut damage and permeability outcomes in healthy populations using a meta-analysis. METHODS PubMed, The Cochrane Library as well as MEDLINE, SPORTDiscus and CINHAL, via EBSCOhost were searched through February 2019. Studies were selected that evaluated urinary (ratio of disaccharide/monosaccharide excretion) or plasma markers [intestinal Fatty Acid Binding Protein (i-FABP)] of gut permeability and gut cell damage in response to a single bout of exercise. RESULTS A total of 34 studies were included. A random-effects meta-analysis was performed, and showed a large and moderate effect size for markers of gut damage (i-FABP) (ES 0.81; 95% CI 0.63-0.98; n = 26; p < 0.001) and gut permeability (Disaccharide Sugar/Monosaccharide Sugar) (ES 0.70; 95% CI 0.29-1.11; n = 17; p < 0.001), respectively. Exercise performed in hot conditions (> 23 °C) further increased markers of gut damage compared with thermoneutral conditions [ES 1.06 (95% CI 0.88-1.23) vs. 0.66 (95% CI 0.43-0.89); p < 0.001]. Exercise duration did not have any significant effect on gut damage or permeability outcomes. CONCLUSIONS These findings demonstrate that a single bout of exercise increases gut damage and gut permeability in healthy participants, with gut damage being exacerbated in hot environments. Further investigation into nutritional strategies to minimise gut damage and permeability after exercise is required. PROSPERO database number (CRD42018086339).
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK.
- Yorkshire Carnegie Rugby Union Club, Leeds, UK.
| | - Alex Griffiths
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, The University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, UK
- England Performance Unit, Rugby Football League, Leeds, UK
| | - Kevin Deighton
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK
| |
Collapse
|
11
|
Wiley JW, Zong Y, Zheng G, Zhu S, Hong S. Histone H3K9 methylation regulates chronic stress and IL-6-induced colon epithelial permeability and visceral pain. Neurogastroenterol Motil 2020; 32:e13941. [PMID: 32743845 PMCID: PMC8007084 DOI: 10.1111/nmo.13941] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic stress is associated with activation of the HPA axis, elevation in pro-inflammatory cytokines, decrease in intestinal epithelial cell tight junction (TJ) proteins, and enhanced visceral pain. It is unknown whether epigenetic regulatory pathways play a role in chronic stress-induced intestinal barrier dysfunction and visceral hyperalgesia. METHODS Young adult male rats were subjected to water avoidance stress ± H3K9 methylation inhibitors or siRNAs. Visceral pain response was assessed. Differentiated Caco-2/BBE cells and human colonoids were treated with cortisol or IL-6 ± antagonists. Expression of TJ, IL-6, and H3K9 methylation status at gene promoters was measured. Transepithelial electrical resistance and FITC-dextran permeability were evaluated. KEY RESULTS Chronic stress induced IL-6 up-regulation prior to a decrease in TJ proteins in the rat colon. The IL-6 level inversely correlated with occludin expression. Treatment with IL-6 decreased occludin and induced visceral hyperalgesia. Chronic stress and IL-6 increased H3K9 methylation and decreased transcriptional GR binding to the occludin gene promoter, leading to down-regulation of protein expression and increase in paracellular permeability. Intrarectal administration of a H3K9 methylation antagonist prevented chronic stress-induced visceral hyperalgesia in the rat. In a human colonoid model, cortisol decreased occludin expression, which was prevented by the GR antagonist RU486, and IL-6 increased H3K9 methylation and decreased TJ protein levels, which were prevented by inhibitors of H3K9 methylation. CONCLUSIONS & INFERENCES Our findings support a novel role for methylation of the repressive histone H3K9 to regulate chronic stress, pro-inflammatory cytokine-mediated reduction in colon TJ protein levels, and increase in paracellular permeability and visceral hyperalgesia.
Collapse
Affiliation(s)
- John W Wiley
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gen Zheng
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| |
Collapse
|
12
|
Pintus R, Bongiovanni T, Corbu S, Francavilla VC, DessÌ A, Noto A, Corsello G, Finco G, Fanos V, Cesare Marincola F. Sportomics in professional soccer players: metabolomics results during preseason. J Sports Med Phys Fitness 2020; 61:324-330. [PMID: 32936572 DOI: 10.23736/s0022-4707.20.11200-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sportomics is the application of metabolomics to study the metabolism shifts of individuals that practice sports or do physical exercise. This aim was reached by the analysis of low molecular weight metabolites (<1.5 kDa) present in biological fluids such as blood, saliva or urine. METHODS In this study, authors performed a 1H-NMR analysis of urine from 21 professional soccer players collected at 3 different time points during the preseason preparation period before the beginning of Serie A Championship (first division) in Italy. RESULTS Urine profile changed during the observational period. In particular, significant variations were observed for trimethylamine-N-oxide, dimethylamine, hippuric acid, hypoxanthine, guanidoacetic acid, 3-hydroxybutyric acid, citric acid and creatine. These modifications could be related to the diet, training and microbiota. For instance, trimethylamine-N-oxide and hippuric acid are both of dietary origins but are also related to the microbiota, while 3-hydroxy-butyric acid is associated with the type of physical exercise. CONCLUSIONS This is the first sportomics study ever performed on professional soccer players, according to authors' knowledge. In the future, sportomics could be applied in a tailored way to choose the best diet and training program in the single individual to obtain the best possible performances and to prevent injuries of athletes.
Collapse
Affiliation(s)
- Roberta Pintus
- Neonatal Intensive Care Unit, University Hospital of Cagliari, University of Cagliari, Monserrato, Cagliari, Italy
| | - Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy -
| | - Sara Corbu
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vincenzo C Francavilla
- School of Engineering, Architecture and Motor Sciences, Kore University of Enna, Enna, Italy
| | - Angelica DessÌ
- Neonatal Intensive Care Unit, University Hospital of Cagliari, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Science and Public Health, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Corsello
- Neonatal Intensive Care Unit, Department of Sciences for Health Promotion and Mother and Child Care, P. Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Gabriele Finco
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, University Hospital of Cagliari, University of Cagliari, Monserrato, Cagliari, Italy
| | | |
Collapse
|
13
|
O'Leary TJ, Wardle SL, Greeves JP. Energy Deficiency in Soldiers: The Risk of the Athlete Triad and Relative Energy Deficiency in Sport Syndromes in the Military. Front Nutr 2020; 7:142. [PMID: 32984399 PMCID: PMC7477333 DOI: 10.3389/fnut.2020.00142] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Military personnel experience energy deficit (total energy expenditure higher than energy intake), particularly during combat training and field exercises where exercising energy expenditures are high and energy intake is reduced. Low energy availability (energy intake minus exercising energy expenditure expressed relative to fat free mass) impairs endocrine function and bone health, as recognized in female athletes as the Female Athlete Triad syndrome. More recently, the Relative Energy Deficiency in Sport (RED-S) syndrome encompasses broader health outcomes, physical and cognitive performance, non-athletes, and men. This review summarizes the evidence for the effect of low energy availability and energy deficiency in military training and operations on health and performance outcomes. Energy availability is difficult to measure in free-living individuals but doubly labeled water studies demonstrate high total energy expenditures during military training; studies that have concurrently measured energy intake, or measured body composition changes with DXA, suggest severe and/or prolonged energy deficits. Military training in energy deficit disturbs endocrine and metabolic function, menstrual function, bone health, immune function, gastrointestinal health, iron status, mood, and physical and cognitive performance. There are more data for men than women, and little evidence on the chronic effects of repeated exposures to energy deficit. Military training impairs indices of health and performance, indicative of the Triad and RED-S, but the multi-stressor environment makes it difficult to isolate the independent effects of energy deficiency. Studies supplementing with energy to attenuate the energy deficit suggest an independent effect of energy deficiency in the disturbances to metabolic, endocrine and immune function, and physical performance, but randomized controlled trials are lacking.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, UCL, London, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Koay YC, Stanton K, Kienzle V, Li M, Yang J, Celermajer DS, O'Sullivan JF. Effect of chronic exercise in healthy young male adults: a metabolomic analysis. Cardiovasc Res 2020; 117:613-622. [PMID: 32239128 DOI: 10.1093/cvr/cvaa051] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/05/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS To examine the metabolic adaptation to an 80-day exercise intervention in healthy young male adults where lifestyle factors such as diet, sleep, and physical activities are controlled. METHODS AND RESULTS This study involved cross-sectional analysis before and after an 80-day aerobic and strength exercise intervention in 52 young, adult, male, newly enlisted soldiers in 2015. Plasma metabolomic analyses were performed using liquid chromatography, tandem mass spectrometry. Data analyses were performed between March and August 2019. We analysed changes in metabolomic profiles at the end of an 80-day exercise intervention compared to baseline, and the association of metabolite changes with changes in clinical parameters. Global metabolism was dramatically shifted after the exercise training programme. Fatty acids and ketone body substrates, key fuels used by exercising muscle, were dramatically decreased in plasma in response to increased aerobic fitness. There were highly significant changes across many classes of metabolic substrates including lipids, ketone bodies, arginine metabolites, endocannabinoids, nucleotides, markers of proteolysis, products of fatty acid oxidation, microbiome-derived metabolites, markers of redox stress, and substrates of coagulation. For statistical analyses, a paired t-test was used and Bonferroni-adjusted P-value of <0.0004 was considered to be statistically significant. The metabolite dimethylguanidino valeric acid (DMGV) (recently shown to predict lack of metabolic response to exercise) tracked maladaptive metabolic changes to exercise; those with increases in DMGV levels had increases in several cardiovascular risk factors; changes in DMGV levels were significantly positively correlated with increases in body fat (P = 0.049), total and LDL cholesterol (P = 0.003 and P = 0.007), and systolic blood pressure (P = 0.006). This study was approved by the Departments of Defence and Veterans' Affairs Human Research Ethics Committee and written informed consent was obtained from each subject. CONCLUSION For the first time, the true magnitude and extent of metabolic adaptation to chronic exercise training are revealed in this carefully designed study, which can be leveraged for novel therapeutic strategies in cardiometabolic disease. Extending the recent report of DMGV's predictive utility in sedentary, overweight individuals, we found that it is also a useful marker of poor metabolic response to exercise in young, healthy, fit males.
Collapse
Affiliation(s)
- Yen Chin Koay
- Heart Research Institute, Sydney, NSW, Australia
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Kelly Stanton
- Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Mengbo Li
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW, Australia
| | - Jean Yang
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW, Australia
| | - David S Celermajer
- Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - John F O'Sullivan
- Heart Research Institute, Sydney, NSW, Australia
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Khan MS, Ikram M, Park JS, Park TJ, Kim MO. Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeutic Interventions: Special Focus on Anthocyanins. Cells 2020; 9:cells9040853. [PMID: 32244729 PMCID: PMC7226756 DOI: 10.3390/cells9040853] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
The human gut is a safe environment for several microbes that are symbiotic and important for the wellbeing of human health. However, studies on gut microbiota in different animals have suggested that changes in the composition and structure of these microbes may promote gut inflammation by releasing inflammatory cytokines and lipopolysaccharides, gut-wall leakage, and may affect systemic inflammatory and immune mechanisms that are important for the normal functioning of the body. There are many factors that aid in the gut’s dysbiosis and neuroinflammation, including high stress levels, lack of sleep, fatty and processed foods, and the prolonged use of antibiotics. These neurotoxic mechanisms of dysbiosis may increase susceptibility to Alzheimer’s disease (AD) and other neurodegenerative conditions. Therefore, studies have recently been conducted to tackle AD-like conditions by specifically targeting gut microbes that need further elucidation. It was suggested that gut dyshomeostasis may be regulated by using available options, including the use of flavonoids such as anthocyanins, and restriction of the use of high-fatty-acid-containing food. In this review, we summarize the gut microbiota, factors promoting it, and possible therapeutic interventions especially focused on the therapeutic potential of natural dietary polyflavonoid anthocyanins. Our study strongly suggests that gut dysbiosis and systemic inflammation are critically involved in the development of neurodegenerative disorders, and the natural intake of these flavonoids may provide new therapeutic opportunities for preclinical or clinical studies.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Jun Sung Park
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research, Centre Institute of Cancer, Sciences University of Glasgow, 0747 657 5394 Glasgow, UK;
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
16
|
Karl JP, Armstrong NJ, McClung HL, Player RA, Rood JC, Racicot K, Soares JW, Montain SJ. A diet of U.S. military food rations alters gut microbiota composition and does not increase intestinal permeability. J Nutr Biochem 2019; 72:108217. [PMID: 31473505 DOI: 10.1016/j.jnutbio.2019.108217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Interactions between gut microbes and dietary components modulate intestinal permeability (IP) and inflammation. Recent studies have reported altered fecal microbiota composition together with increased IP and inflammation in individuals consuming military food rations in austere environments, but could not isolate effects of the diet from environmental factors. To determine how the U.S. Meal, Ready-to-Eat food ration affects fecal microbiota composition, IP and inflammation, 60 adults (95% male,18-61 years) were randomized to consume their usual ad libitum diet for 31 days (CON) or a strictly controlled Meal, Ready-to-Eat-only diet for 21 days followed by their usual diet for 10 days (MRE). In both groups, fecal microbiota composition was measured before, during (INT, days 1-21) and after the intervention period. IP and inflammation [high-sensitivity C-reactive protein (hsCRP)] were measured on days 0, 10, 21 and 31. Longitudinal changes in fecal microbiota composition differed between groups (P=.005), and fecal samples collected from MRE during INT were identified with 88% accuracy using random forest models. The genera making the strongest contribution to that prediction accuracy included multiple lactic acid bacteria (Lactobacillus, Lactococcus, Leuconostoc), which demonstrated lower relative abundance in MRE, and several genera known to dominate the ileal microbiota (Streptococcus, Veillonella, Clostridium), the latter two demonstrating higher relative abundance in MRE. IP and hsCRP were both lower (34% and 41%, respectively) in MRE relative to CON on day 21 (P<.05) but did not differ otherwise. Findings demonstrate that a Meal, Ready-to-Eat ration diet alters fecal microbiota composition and does not increase IP or inflammation.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| | - Nicholes J Armstrong
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| | - Holly L McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| | - Robert A Player
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723, USA.
| | - Jennifer C Rood
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| | - Kenneth Racicot
- Combat Feeding Directorate, U.S. Army Combat Capabilities Development Command-Soldier Center, 15 General Greene Ave, Natick, MA 01760, USA.
| | - Jason W Soares
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command-Soldier Center, 15 General Greene Ave, Natick, MA 01760, USA.
| | - Scott J Montain
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA.
| |
Collapse
|
17
|
Pearce SC, Coia HG, Karl JP, Pantoja-Feliciano IG, Zachos NC, Racicot K. Intestinal in vitro and ex vivo Models to Study Host-Microbiome Interactions and Acute Stressors. Front Physiol 2018; 9:1584. [PMID: 30483150 PMCID: PMC6240795 DOI: 10.3389/fphys.2018.01584] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome is extremely important for maintaining homeostasis with host intestinal epithelial, neuronal, and immune cells and this host-microbe interaction is critical during times of stress or disease. Environmental, nutritional, and cognitive stress are just a few factors known to influence the gut microbiota and are thought to induce microbial dysbiosis. Research on this bidirectional relationship as it pertains to health and disease is extensive and rapidly expanding in both in vivo and in vitro/ex vivo models. However, far less work has been devoted to studying effects of host-microbe interactions on acute stressors and performance, the underlying mechanisms, and the modulatory effects of different stressors on both the host and the microbiome. Additionally, the use of in vitro/ex vivo models to study the gut microbiome and human performance has not been researched extensively nor reviewed. Therefore, this review aims to examine current evidence concerning the current status of in vitro and ex vivo host models, the impact of acute stressors on gut physiology/microbiota as well as potential impacts on human performance and how we can parlay this information for DoD relevance as well as the broader scientific community. Models reviewed include widely utilized intestinal cell models from human and animal models that have been applied in the past for stress or microbiology research as well as ex vivo organ/tissue culture models and new innovative models including organ-on-a-chip and co-culture models.
Collapse
Affiliation(s)
- Sarah C Pearce
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Heidi G Coia
- National Research Council, The National Academies of Sciences, Engineering, and Medicine, Washington, DC, United States.,711th Human Performance Wing, Airforce Research Laboratory, Airman Systems Directorate, Human-Centered ISR Division, Molecular Mechanisms Branch, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - J P Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Ida G Pantoja-Feliciano
- Soldier Protection and Optimization Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenneth Racicot
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
18
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
19
|
Dai Y, Yeo SCM, Barnes PJ, Donnelly LE, Loo LC, Lin HS. Pre-clinical Pharmacokinetic and Metabolomic Analyses of Isorhapontigenin, a Dietary Resveratrol Derivative. Front Pharmacol 2018; 9:753. [PMID: 30050440 PMCID: PMC6050476 DOI: 10.3389/fphar.2018.00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), a dietary resveratrol (trans-3,5,4'-trihydroxystilbene) derivative, possesses various health-promoting activities. To further evaluate its medicinal potentials, the pharmacokinetic and metabolomic profiles of ISO were examined in Sprague-Dawley rats. Methods: The plasma pharmacokinetics and metabolomics were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. Results: Upon intravenous injection (90 μmol/kg), ISO exhibited a fairly rapid clearance (CL) and short mean residence time (MRT). After a single oral administration (100 μmol/kg), ISO was rapidly absorbed and showed a long residence in the systemic circulation. Dose escalation to 200 μmol/kg resulted in higher dose-normalized maximal plasma concentrations (Cmax/Dose), dose-normalized plasma exposures (AUC/Dose), and oral bioavailability (F). One-week repeated daily dosing of ISO did not alter its major oral pharmacokinetic parameters. Pharmacokinetic comparisons clearly indicated that ISO displayed pharmacokinetic profiles superior to resveratrol as its Cmax/Dose, AUC/Dose, and F were approximately two to three folds greater than resveratrol. Metabolomic investigation revealed that 1-week ISO administration significantly reduced plasma concentrations of arachidonic acid, cholesterol, fructose, allantoin, and cadaverine but increased tryptamine levels, indicating its impact on metabolic pathways related to health-promoting effects. Conclusion: ISO displayed favorable pharmacokinetic profiles and may be a promising nutraceutical in view of its health-promoting properties.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Samuel C M Yeo
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Shimadzu (Asia Pacific) Pte. Ltd., Singapore, Singapore
| | - Peter J Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lai C Loo
- Shimadzu (Asia Pacific) Pte. Ltd., Singapore, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Investigation into complementary and integrative medicine practitioners' clinical experience of intestinal permeability: A cross-sectional survey. Complement Ther Clin Pract 2018; 31:200-209. [DOI: 10.1016/j.ctcp.2018.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/22/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
|
21
|
Sinagra E, Morreale GC, Mohammadian G, Fusco G, Guarnotta V, Tomasello G, Cappello F, Rossi F, Amvrosiadis G, Raimondo D. New therapeutic perspectives in irritable bowel syndrome: Targeting low-grade inflammation, immuno-neuroendocrine axis, motility, secretion and beyond. World J Gastroenterol 2017; 23:6593-6627. [PMID: 29085207 PMCID: PMC5643283 DOI: 10.3748/wjg.v23.i36.6593] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/15/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic, recurring, and remitting functional disorder of the gastrointestinal tract characterized by abdominal pain, distention, and changes in bowel habits. Although there are several drugs for IBS, effective and approved treatments for one or more of the symptoms for various IBS subtypes are needed. Improved understanding of pathophysiological mechanisms such as the role of impaired bile acid metabolism, neurohormonal regulation, immune dysfunction, the epithelial barrier and the secretory properties of the gut has led to advancements in the treatment of IBS. With regards to therapies for restoring intestinal permeability, multiple studies with prebiotics and probiotics are ongoing, even if to date their efficacy has been limited. In parallel, much progress has been made in targeting low-grade inflammation, especially through the introduction of drugs such as mesalazine and rifaximin, even if a better knowledge of the mechanisms underlying the low-grade inflammation in IBS may allow the design of clinical trials that test the efficacy and safety of such drugs. This literature review aims to summarize the findings related to new and investigational therapeutic agents for IBS, most recently developed in preclinical as well as Phase 1 and Phase 2 clinical studies.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
- Euro-Mediterranean Institute of Science and Technology, 90100 Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90100 Palermo, Italy
| | | | - Ghazaleh Mohammadian
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska Institutet, Karolinska University Hospital, Huddinge, 17176 Stockholm, Sweden
| | - Giorgio Fusco
- Unit of Internal Medicine, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, 90100 Palermo, Italy
| | - Valentina Guarnotta
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine, University of Palermo, Palermo 90127, Italy
| | - Giovanni Tomasello
- Euro-Mediterranean Institute of Science and Technology, 90100 Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90100 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, 90100 Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90100 Palermo, Italy
| | - Francesca Rossi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| | - Georgios Amvrosiadis
- Unit of Gastroenterology, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, 90100 Palermo, Italy
| | - Dario Raimondo
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| |
Collapse
|
22
|
Jiang P, Trimigno A, Stanstrup J, Khakimov B, Viereck N, Engelsen SB, Sangild PT, Dragsted LO. Antibiotic Treatment Preventing Necrotising Enterocolitis Alters Urinary and Plasma Metabolomes in Preterm Pigs. J Proteome Res 2017; 16:3547-3557. [PMID: 28871782 DOI: 10.1021/acs.jproteome.7b00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Necrotising enterocolitis (NEC) is a serious gut inflammatory condition in premature neonates, onset and development of which depend on the gut microbiome. Attenuation of the gut microbiome by antibiotics can reduce NEC incidence and severity. However, how the antibiotics-suppressed gut microbiome affects the whole-body metabolism in NEC-sensitive premature neonates is unknown. In formula-fed preterm pigs, used as a model for preterm infants, plasma and urinary metabolomes were investigated by LC-MS and 1H NMR, with and without antibiotic treatment immediately after birth. While it reduced the gut microbiome density and NEC lesions as previously reported, the antibiotic treatment employed in the current study affected the abundance of 44 metabolites in different metabolic pathways. In antibiotics-treated pigs, tryptophan metabolism favored the kynurenine pathway, relative to the serotonin pathway, as shown by specific metabolites. Metabolites associated with the gut microbiome, including 3-phenyllactic acid, 4-hydroxyphenylacetic acid, and phenylacetylglycine, all from phenylalanine, and three bile acids showed lower levels in the antibiotics-treated pigs where the gut microbiome was extensively attenuated. Findings in the current study warrant further investigation of metabolic and developmental consequences of antibiotic treatment in preterm neonates.
Collapse
Affiliation(s)
| | - Alessia Trimigno
- Department of Agricultural and Food Sciences, University of Bologna , Campus di Scienze degli Alimenti, Cesena, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Karl JP, Margolis LM, Murphy NE, Carrigan CT, Castellani JW, Madslien EH, Teien HK, Martini S, Montain SJ, Pasiakos SM. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis. Physiol Rep 2017; 5:e13407. [PMID: 28899914 PMCID: PMC5599865 DOI: 10.14814/phy2.13407] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Nancy E Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Christopher T Carrigan
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - John W Castellani
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | | | - Svein Martini
- Norwegian Defense Research Establishment, Kjeller, Norway
| | - Scott J Montain
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
24
|
Karl JP, Margolis LM, Madslien EH, Murphy NE, Castellani JW, Gundersen Y, Hoke AV, Levangie MW, Kumar R, Chakraborty N, Gautam A, Hammamieh R, Martini S, Montain SJ, Pasiakos SM. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol 2017; 312:G559-G571. [PMID: 28336545 DOI: 10.1152/ajpgi.00066.2017] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers (n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress.NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with changes in intestinal microbiota composition and metabolism. Prestress intestinal microbiota composition and changes in fecal concentrations of metabolites linked to the microbiota were associated with increased intestinal permeability. Findings suggest that targeting the intestinal microbiota could provide novel strategies for mitigating increases in intestinal permeability during stress.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Nancy E Murphy
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - John W Castellani
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Allison V Hoke
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland.,Geneva Foundation, Fort Detrick, Maryland; and
| | - Michael W Levangie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland.,Geneva Foundation, Fort Detrick, Maryland; and
| | - Raina Kumar
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland.,Geneva Foundation, Fort Detrick, Maryland; and
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland
| | - Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland
| | - Svein Martini
- Norwegian Defense Research Establishment, Kjeller, Norway
| | - Scott J Montain
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
25
|
Yi L, Dong N, Yun Y, Deng B, Ren D, Liu S, Liang Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal Chim Acta 2016; 914:17-34. [PMID: 26965324 DOI: 10.1016/j.aca.2016.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/03/2023]
Abstract
This review focuses on recent and potential advances in chemometric methods in relation to data processing in metabolomics, especially for data generated from mass spectrometric techniques. Metabolomics is gradually being regarded a valuable and promising biotechnology rather than an ambitious advancement. Herein, we outline significant developments in metabolomics, especially in the combination with modern chemical analysis techniques, and dedicated statistical, and chemometric data analytical strategies. Advanced skills in the preprocessing of raw data, identification of metabolites, variable selection, and modeling are illustrated. We believe that insights from these developments will help narrow the gap between the original dataset and current biological knowledge. We also discuss the limitations and perspectives of extracting information from high-throughput datasets.
Collapse
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yonghuan Yun
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Baichuan Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dabing Ren
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|