1
|
Jones RA, Jerse AE, Tang CM. Gonococcal PorB: a multifaceted modulator of host immune responses. Trends Microbiol 2024; 32:355-364. [PMID: 37891023 PMCID: PMC11876096 DOI: 10.1016/j.tim.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Neisseria gonorrhoeae is a human-specific pathogen responsible for the sexually transmitted infection, gonorrhoea. N. gonorrhoeae promotes its survival by manipulating both innate and adaptive immune responses. The most abundant gonococcal outer-membrane protein is PorB, an essential porin that facilitates ion exchange. Importantly, gonococcal PorB has several immunomodulatory properties. To subvert the innate immune response, PorB suppresses killing mechanisms of macrophages and neutrophils, and recruits negative regulators of complement to the gonococcal cell surface. For manipulation of adaptive immune responses, gonococcal PorB suppresses the capability of dendritic cells to stimulate proliferation of T cells. As gonococcal PorB is highly abundant in outer-membrane vesicles, consideration of the immunomodulatory properties of this porin is critical when designing gonococcal vaccines.
Collapse
Affiliation(s)
- Rebekah A Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
2
|
Tram G, Jen FEC, Phillips ZN, Lancashire JF, Timms J, Poole J, Jennings MP, Atack JM. Phasevarions in Haemophilus influenzae biogroup aegyptius control expression of multiple proteins. Microbiol Spectr 2024; 12:e0260123. [PMID: 38054719 PMCID: PMC10783040 DOI: 10.1128/spectrum.02601-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Haemophilus influenzae biogroup aegyptius is a human-adapted pathogen and the causative agent of Brazilian purpuric fever (BPF), an invasive disease with high mortality, that sporadically manifests in children previously suffering conjunctivitis. Phase variation is a rapid and reversible switching of gene expression found in many bacterial species, and typically associated with outer-membrane proteins. Phase variation of cytoplasmic DNA methyltransferases has been shown to play important roles in bacterial gene regulation and can act as epigenetic switches, regulating the expression of multiple genes as part of systems called phasevarions (phase-variable regulons). This study characterized two alleles of the ModA phasevarion present in H. influenzae biogroup aegyptius, ModA13, found in non-BPF causing strains and ModA16, unique to BPF causing isolates. Phase variation of ModA13 and ModA16 led to genome-wide changes to DNA methylation resulting in altered protein expression. These changes did not affect serum resistance in H. influenzae biogroup aegyptius strains.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Zachary N. Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John F. Lancashire
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jamie Timms
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Borrow R, Findlow J. The important lessons lurking in the history of meningococcal epidemiology. Expert Rev Vaccines 2024; 23:445-462. [PMID: 38517733 DOI: 10.1080/14760584.2024.2329618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION The epidemiology of invasive meningococcal disease (IMD), a rare but potentially fatal illness, is typically described as unpredictable and subject to sporadic outbreaks. AREAS COVERED Meningococcal epidemiology and vaccine use during the last ~ 200 years are examined within the context of meningococcal characterization and classification to guide future IMD prevention efforts. EXPERT OPINION Historical and contemporary data highlight the dynamic nature of meningococcal epidemiology, with continued emergence of hyperinvasive clones and affected regions. Recent shifts include global increases in serogroup W disease, meningococcal antimicrobial resistance (AMR), and meningococcal urethritis; additionally, unvaccinated populations have experienced disease resurgences following lifting of COVID-19 restrictions. Despite these changes, a close analysis of meningococcal epidemiology indicates consistent dominance of serogroups A, B, C, W, and Y and elevated IMD rates among infants and young children, adolescents/young adults, and older adults. Demonstrably effective vaccines against all 5 major disease-causing serogroups are available, and their prophylactic use represents a powerful weapon against IMD, including AMR. The World Health Organization's goal of defeating meningitis by the year 2030 demands broad protection against IMD, which in turn indicates an urgent need to expand meningococcal vaccination programs across major disease-causing serogroups and age-related risk groups.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UKHSA, Manchester Royal Infirmary, Manchester, UK
| | - Jamie Findlow
- Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| |
Collapse
|
4
|
Nahar N, Tram G, Jen FEC, Phillips ZN, Weinert L, Bossé J, Jabbari J, Gouil Q, Du MM, Ritchie M, Bowden R, Langford P, Tucker A, Jennings M, Turni C, Blackall P, Atack J. Actinobacillus pleuropneumoniae encodes multiple phase-variable DNA methyltransferases that control distinct phasevarions. Nucleic Acids Res 2023; 51:3240-3260. [PMID: 36840716 PMCID: PMC10123105 DOI: 10.1093/nar/gkad091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Jafar S Jabbari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mei R M Du
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
5
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
6
|
Jen FEC, El-Deeb IM, Zalucki YM, Edwards JL, Walker MJ, von Itzstein M, Jennings MP. A drug candidate for Alzheimer's and Huntington's disease, PBT2, can be repurposed to render Neisseria gonorrhoeae susceptible to natural cationic antimicrobial peptides. J Antimicrob Chemother 2021; 76:2850-2853. [PMID: 34450628 DOI: 10.1093/jac/dkab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neisseria gonorrhoeae is a Gram-negative bacterial pathogen that causes gonorrhoea. No vaccine is available to prevent gonorrhoea and the emergence of MDR N. gonorrhoeae strains represents an immediate public health threat. OBJECTIVES To evaluate whether PBT2/zinc may sensitize MDR N. gonorrhoeae to natural cationic antimicrobial peptides. METHODS MDR strains that contain differing resistance mechanisms against numerous antibiotics were tested in MIC assays. MIC assays were performed using the broth microdilution method according to CLSI guidelines in a microtitre plate. Serially diluted LL-37 or PG-1 was tested in combination with a sub-inhibitory concentration of PBT2/zinc. Serially diluted tetracycline was also tested with sub-inhibitory concentrations of PBT2/zinc and LL-37. SWATH-MS proteomic analysis of N. gonorrhoeae treated with PBT2/zinc, LL-37 and/or tetracycline was performed to determine the mechanism(s) of N. gonorrhoeae susceptibility to antibiotics and peptides. RESULTS Sub-inhibitory concentrations of LL-37 and PBT2/zinc synergized to render strain WHO-Z susceptible to tetracycline, whereas the killing effect of PG-1 and PBT2/zinc was additive. SWATH-MS proteomic analysis suggested that PBT2/zinc most likely leads to a loss of membrane integrity and increased protein misfolding and, in turn, results in bacterial death. CONCLUSIONS Here we show that PBT2, a candidate Alzheimer's and Huntington's disease drug, can be repurposed to render MDR N. gonorrhoeae more susceptible to the endogenous antimicrobial peptides LL-37 and PG-1. In the presence of LL-37, PBT2/zinc can synergize with tetracycline to restore tetracycline susceptibility to gonococci resistant to this antibiotic.
Collapse
Affiliation(s)
- Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Yaramah M Zalucki
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Jennifer L Edwards
- The Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital and The Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| |
Collapse
|
7
|
Streptococcus suis Encodes Multiple Allelic Variants of a Phase-Variable Type III DNA Methyltransferase, ModS, That Control Distinct Phasevarions. mSphere 2021; 6:6/3/e00069-21. [PMID: 33980672 PMCID: PMC8125046 DOI: 10.1128/msphere.00069-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is a causative agent of meningitis, polyarthritis, and polyserositis in swine, and it is a major cause of zoonotic meningitis in humans. Here, we investigate epigenetic gene regulation in S. suis by multiple phasevarions controlled by the phase-variable type III DNA methyltransferase ModS. Streptococcus suis is a significant cause of bacterial meningitis in humans, particularly in Southeast Asia, and is a leading cause of respiratory and invasive disease in pigs. Phase-variable DNA methyltransferases, associated with restriction-modification (R-M) systems, are a source of epigenetic gene regulation, controlling the expression of multiple genes. These systems are known as phasevarions (phase-variable regulons) and have been characterized in many host-adapted bacterial pathogens. We recently described the presence of a Type III DNA methyltransferase in S. suis, ModS, which contains a simple sequence repeat (SSR) tract within the open reading frame of the modS gene and which differed in length between individual strains. We also observed that multiple allelic variants of the modS gene were present in a population of S. suis isolates. Here, we demonstrate that a biphasic ON-OFF switching of expression occurs in the two most common ModS alleles, ModS1 and ModS2, and that switching is dependent on SSR tract length. Furthermore, we show using single-molecule real-time (SMRT) sequencing that ModS1 and ModS2 are active methyltransferases in S. suis. ON-OFF switching of each ModS allele results in the regulation of distinct phasevarions, with the ModS2 phasevarion impacting growth patterns and antibiotic resistance. This is the first demonstration of a phase-variable Type III DNA methyltransferase in a Gram-positive organism that controls a phasevarion. Characterizing the phenotypic effects of phasevarions in S. suis is key to understanding pathogenesis and the development of future vaccines. IMPORTANCEStreptococcus suis is a causative agent of meningitis, polyarthritis, and polyserositis in swine, and it is a major cause of zoonotic meningitis in humans. Here, we investigate epigenetic gene regulation in S. suis by multiple phasevarions controlled by the phase-variable Type III DNA methyltransferase ModS. This is the first characterized example of a Type III R-M system regulating a phasevarion in a Gram-positive organism. We demonstrate that biphasic ON-OFF switching of ModS expression results in differences in bacterial growth and antibiotic resistance. Understanding the effects of ModS phase variation is required to determine the stably expressed antigenic repertoire of S. suis, which will direct and inform the development of antimicrobial treatments and vaccines against this important pathogen.
Collapse
|
8
|
Rubbab T, Pegg CL, Phung TK, Nouwens AS, Yeo KYB, Zacchi LF, Muhammad A, Naqvi SMS, Schulz BL. N-glycosylation on Oryza sativa root germin-like protein 1 is conserved but not required for stability or activity. Biochem Biophys Res Commun 2021; 553:72-77. [PMID: 33756348 DOI: 10.1016/j.bbrc.2021.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 11/18/2022]
Abstract
Germin and germin-like proteins (GLPs) are a broad family of extracellular glycoproteins ubiquitously distributed in plants. Overexpression of Oryza sativa root germin like protein 1 (OsRGLP1) enhances superoxide dismutase (SOD) activity in transgenic plants. Here, we report bioinformatic analysis and heterologous expression of OsRGLP1 to study the role of glycosylation on OsRGLP1 protein stability and activity. Sequence analysis of OsRGLP1 homologs identified diverse N-glycosylation sequons, one of which was highly conserved. We therefore expressed OsRGLP1 in glycosylation-competent Saccharomyces cerevisiae as a Maltose Binding Protein (MBP) fusion. Mass spectrometry analysis of purified OsRGLP1 showed it was expressed by S. cerevisiae in both N-glycosylated and unmodified forms. Glycoprotein thermal profiling showed little difference in the thermal stability of the glycosylated and unmodified protein forms. Circular Dichroism spectroscopy of MBP-OsRGLP1 and a N-Q glycosylation-deficient variant showed that both glycosylated and unmodified MBP-OsRGLP1 had similar secondary structure, and both forms had equivalent SOD activity. Together, we concluded that glycosylation was not critical for OsRGLP1 protein stability or activity, and it could therefore likely be produced in Escherichia coli without glycosylation. Indeed, we found that OsRGLP1 could be efficiently expressed and purified from K12 shuffle E. coli with a specific activity of 1251 ± 70 Units/mg. In conclusion, we find that some highly conserved N-glycosylation sites are not necessarily required for protein stability or activity, and describe a suitable method for production of OsRGLP1 which paves the way for further characterization and use of this protein.
Collapse
Affiliation(s)
- Tehseen Rubbab
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia
| | - Amanda S Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia
| | - K Y Benjamin Yeo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia
| | - Lucia F Zacchi
- Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Amna Muhammad
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - S M Saqlan Naqvi
- Uswa Institute of Higher Education, Saif Ali Education Complex, Japan Road, Islamabad, 45750, Pakistan
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia; Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
9
|
Starch granular protein of high-amylose wheat gives innate resistance to amylolysis. Food Chem 2020; 330:127328. [DOI: 10.1016/j.foodchem.2020.127328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
|
10
|
Delbaz A, Chen M, Jen FEC, Schulz BL, Gorse AD, Jennings MP, St John JA, Ekberg JAK. Neisseria meningitidis Induces Pathology-Associated Cellular and Molecular Changes in Trigeminal Schwann Cells. Infect Immun 2020; 88:e00955-19. [PMID: 31964742 PMCID: PMC7093114 DOI: 10.1128/iai.00955-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis, a common cause of sepsis and bacterial meningitis, infects the meninges and central nervous system (CNS), primarily via paracellular traversal across the blood-brain barrier (BBB) or blood-cerebrospinal fluid barrier. N. meningitidis is often present asymptomatically in the nasopharynx, and the nerves extending between the nasal cavity and the brain constitute an alternative route by which the meningococci may reach the CNS. To date, the cellular mechanisms involved in nerve infection are not fully understood. Peripheral nerve glial cells are phagocytic and are capable of eliminating microorganisms, but some pathogens may be able to overcome this protection mechanism and instead infect the glia, causing cell death or pathology. Here, we show that N. meningitidis readily infects trigeminal Schwann cells (the glial cells of the trigeminal nerve) in vitro in both two-dimensional and three-dimensional cell cultures. Infection of trigeminal Schwann cells may be one mechanism by which N. meningitidis is able to invade the CNS. Infection of the cells led to multinucleation and the appearance of atypical nuclei, with the presence of horseshoe nuclei and the budding of nuclei increasing over time. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics followed by bioinformatics pathway analysis, we showed that N. meningitidis induced protein alterations in the glia that were associated with altered intercellular signaling, cell-cell interactions, and cellular movement. The analysis also suggested that the alterations in protein levels were consistent with changes occurring in cancer. Thus, infection of the trigeminal nerve by N. meningitidis may have ongoing adverse effects on the biology of Schwann cells, which may lead to pathology.
Collapse
Affiliation(s)
- Ali Delbaz
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, Brisbane, Australia
| | - Alain-Dominique Gorse
- QFAB Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | | | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
11
|
Measurement of surface protein antigens, PorA and PorB, in Bexsero vaccine using quantitative mass spectrometry. Vaccine 2020; 38:1431-1435. [DOI: 10.1016/j.vaccine.2019.11.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
|
12
|
Kerr ED, Phung TK, Caboche CH, Fox GP, Platz GJ, Schulz BL. The intrinsic and regulated proteomes of barley seeds in response to fungal infection. Anal Biochem 2019; 580:30-35. [PMID: 31181183 DOI: 10.1016/j.ab.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023]
Abstract
Barley is an important cereal grain used for beer brewing, animal feed, and human food consumption. Fungal disease can impact barley production, as it causes substantial yield loss and lowers seed quality. We used sequential window acquisition of all theoretical ions mass spectrometry (SWATH-MS) to measure and quantify the relative abundance of proteins within seeds of different barley varieties under various fungal pathogen burdens (ProteomeXchange Datasets PXD011303 and PXD014093). Fungal burden in the leaves and stems of barley resulted in changes to the seed proteome. However, these changes were minimal and showed substantial variation among barley samples infected with different pathogens. The limited effect of intrinsic disease resistance on the seed proteome is consistent with the main mediators of disease resistance being present in the leaves and stems of the plant. The seeds of barley varieties accredited for use as malt had higher levels of proteins associated with starch synthesis and beer quality. The proteomic workflows developed and implemented here have potential application in quality control, breeding and processing of barley, and other agricultural products.
Collapse
Affiliation(s)
- Edward D Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia
| | - Christopher H Caboche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia
| | - Glen P Fox
- Centre for Nutrition and Food Sciences, Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Greg J Platz
- Department of Agriculture & Fisheries, Hermitage Research Facility, Warwick, 4370, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia; Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
13
|
Abstract
Mass spectrometry (MS) proteomics allows systematic identification, characterization, and relative quantification of the full suite of proteins in a biological sample, and is a powerful analytical approach for investigation of many aspects of the biology of Neisseria meningitidis. Here, we describe methods for robust and efficient sample preparation of the proteome of N. meningitidis suitable for diverse MS proteomics workflows.
Collapse
Affiliation(s)
- Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Liu G, Gilding EK, Kerr ED, Schulz BL, Tabet B, Hamaker BR, Godwin ID. Increasing protein content and digestibility in sorghum grain with a synthetic biology approach. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Epigenetic Regulation Alters Biofilm Architecture and Composition in Multiple Clinical Isolates of Nontypeable Haemophilus influenzae. mBio 2018; 9:mBio.01682-18. [PMID: 30228240 PMCID: PMC6143736 DOI: 10.1128/mbio.01682-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Upper respiratory tract infections are the number one reason for a child to visit the emergency department, and otitis media (middle ear infection) ranks third overall. Biofilms contribute significantly to the chronic nature of bacterial respiratory tract infections, including otitis media, and make these diseases particularly difficult to treat. Several mucosa-associated human pathogens utilize a mechanism of rapid adaptation termed the phasevarion, or phasevariable regulon, to resist environmental and host immune pressures. In this study, we assessed the role of the phasevarion in regulation of biofilm formation by nontypeable Haemophilus influenzae (NTHI), which causes numerous respiratory tract diseases. We found that the NTHI phasevarion regulates biofilm structure and critical biofilm matrix components under disease-specific conditions. The findings of this work could be significant in the design of improved strategies against NTHI infections, as well as diseases due to other pathogens that utilize a phasevarion. Biofilms play a critical role in the colonization, persistence, and pathogenesis of many human pathogens. Multiple mucosa-associated pathogens have evolved a mechanism of rapid adaptation, termed the phasevarion, which facilitates a coordinated regulation of numerous genes throughout the bacterial genome. This epigenetic regulation occurs via phase variation of a DNA methyltransferase, Mod. The phasevarion of nontypeable Haemophilus influenzae (NTHI) significantly affects the severity of experimental otitis media and regulates several disease-related processes. However, the role of the NTHI phasevarion in biofilm formation is unclear. The present study shows that the phasevarions of multiple NTHI clinical isolates regulate in vitro biofilm formation under disease-specific microenvironmental conditions. The impact of phasevarion regulation was greatest under alkaline conditions that mimic those known to occur in the middle ear during disease. Under alkaline conditions, NTHI strains that express the ModA2 methyltransferase formed biofilms with significantly greater biomass and less distinct architecture than those formed by a ModA2-deficient population. The biofilms formed by NTHI strains that express ModA2 also contained less extracellular DNA (eDNA) and significantly less extracellular HU, a DNABII DNA-binding protein critical for biofilm structural stability. Stable biofilm structure is critical for bacterial pathogenesis and persistence in multiple experimental models of disease. These results identify a role for the phasevarion in regulation of biofilm formation, a process integral to the chronic nature of many infections. Understanding the role of the phasevarion in biofilm formation is critical to the development of prevention and treatment strategies for these chronic diseases.
Collapse
|
16
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
17
|
Matthias KA, Strader MB, Nawar HF, Gao YS, Lee J, Patel DS, Im W, Bash MC. Heterogeneity in non-epitope loop sequence and outer membrane protein complexes alters antibody binding to the major porin protein PorB in serogroup B Neisseria meningitidis. Mol Microbiol 2017; 105:934-953. [PMID: 28708335 DOI: 10.1111/mmi.13747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
PorB is a well-characterized outer membrane protein that is common among Neisseria species and is required for survival. A vaccine candidate, PorB induces antibody responses that are directed against six variable surface-exposed loops that differ in sequence depending on serotype. Although Neisseria meningitidis is naturally competent and porB genetic mosaicism provides evidence for strong positive selection, the sequences of PorB serotypes commonly associated with invasive disease are often conserved, calling into question the interaction of specific PorB loop sequences in immune engagement. In this report, we provide evidence that antibody binding to a PorB epitope can be altered by sequence mutations in non-epitope loops. Through the construction of hybrid PorB types and PorB molecular dynamics simulations, we demonstrate that loops both adjacent and non-adjacent to the epitope loop can enhance or diminish antibody binding, a phenotype that correlates with serum bactericidal activity. We further examine the interaction of PorB with outer membrane-associated proteins, including PorA and RmpM. Deletion of these proteins alters the composition of PorB-containing native complexes and reduces antibody binding and serum killing relative to the parental strain, suggesting that both intramolecular and intermolecular PorB interactions contribute to host adaptive immune evasion.
Collapse
Affiliation(s)
- Kathryn A Matthias
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Michael Brad Strader
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Hesham F Nawar
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Yamei S Gao
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Joonseong Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, PA, USA
| | - Dhilon S Patel
- Department of Biological Sciences and Bioengineering Program, Lehigh University, PA, USA
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, PA, USA
| | - Margaret C Bash
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|