1
|
Chao HC, McLuckey SA. Recent Advances in Gas-phase Ion/Ion Chemistry for Lipid Analysis. Trends Analyt Chem 2023; 158:116852. [PMID: 36583222 PMCID: PMC9794197 DOI: 10.1016/j.trac.2022.116852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gas-phase ion/ion reactions can be used to alter analyte ion-types for subsequent dissociation both quickly and efficiently without the need for altering analyte ionization conditions. This capability can be particularly useful when the ion-type that is most efficiently generated by the ionization method at hand does not provide the structural information of interest using available dissociation methods. This situation often arises in the analysis of lipids, which constitute a diverse array of chemical species with many possibilities for isomers. Gas-phase ion/ion reactions have been demonstrated to be capable of enhancing the ability of tandem mass spectrometry to characterize the structures of various lipid classes. This review summarizes progress to date in the application of gas-phase ion/ion reactions to lipid structural characterization.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
2
|
Foreman DJ, McLuckey SA. Recent Developments in Gas-Phase Ion/Ion Reactions for Analytical Mass Spectrometry. Anal Chem 2020; 92:252-266. [PMID: 31693342 PMCID: PMC6949396 DOI: 10.1021/acs.analchem.9b05014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David J Foreman
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Scott A McLuckey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
3
|
He M, Jiang Y, Wang X, Zhao Y, Ye S, Ma J, Fang X, Xu W. Rapid characterization of structure-dependency gas-phase ion/ion reaction via accumulative tandem MS. Talanta 2018; 195:17-22. [PMID: 30625528 DOI: 10.1016/j.talanta.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/25/2022]
Abstract
To enable the rapid detection of biomolecule reactivity and reaction sites, we developed a method based on gas-phase ion/ion reaction and accumulative tandem mass spectrometry (MS). Structure-dependency reactions in gas-phase were performed between biomolecule ions and their reaction partner ions with opposite polarities in a quadrupole ion trap. Gas-phase peptide bioconjugation with pyridoxal-5-phosphate (PLP) was chosen as a proof-of-principle example. It is found that the Coulomb attraction force holds reaction partners close together, which increasing the reaction probability. Post reaction, reaction sites were identified by the consequent accumulative tandem MS method, in which informative product ions in low abundance were enriched by more than 100 times in another quadrupole ion trap. With enough product ions, tandem MS was performed, and reaction sites could be identified unambiguously. Since those reactions are normally biomolecular structure dependent, density functional theory (DFT) calculations were also carried out to understand the reaction mechanism. The method allows for rapid characterization of structure dependent reactivity of a biomolecule, and opens a new avenue for drug development and biomolecule structure analyses.
Collapse
Affiliation(s)
- Muyi He
- College of Information Science, Shenzhen University, Shenzhen 518060, China; School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing 100081, PR China
| | - You Jiang
- National Institute of Metrology, No.18, Bei San Huan Dong Lu, Chaoyang Dist, Beijing 100013, PR China
| | - Xiaofeng Wang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing, PR China
| | - Yue Zhao
- School of Chemistry, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing, PR China
| | - Sijian Ye
- Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, PR China
| | - Jiabi Ma
- School of Chemistry, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing, PR China
| | - Xiang Fang
- National Institute of Metrology, No.18, Bei San Huan Dong Lu, Chaoyang Dist, Beijing 100013, PR China.
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing 100081, PR China.
| |
Collapse
|
4
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
5
|
Peng Z, Bu J, McLuckey SA. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1765-1774. [PMID: 28497355 PMCID: PMC5681889 DOI: 10.1007/s13361-017-1672-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/02/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Zhou Peng
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Jiexun Bu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
6
|
Pilo AL, Zhao F, McLuckey SA. Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:991-1004. [PMID: 28050870 PMCID: PMC5438755 DOI: 10.1007/s13361-016-1554-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alice L Pilo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Feifei Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
7
|
Pilo AL, Bu J, McLuckey SA. Gas-Phase Oxidation of Neutral Basic Residues in Polypeptide Cations by Periodate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1979-1988. [PMID: 27644939 PMCID: PMC5088057 DOI: 10.1007/s13361-016-1491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alice L Pilo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Jiexun Bu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
8
|
Pilo AL, Peng Z, McLuckey SA. The dehydroalanine effect in the fragmentation of ions derived from polypeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:857-866. [PMID: 27484024 PMCID: PMC5068825 DOI: 10.1002/jms.3831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 05/11/2023]
Abstract
The fragmentation of peptides and proteins upon collision-induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non-proteinogenic amino acid with an unsaturated side-chain, undergo enhanced cleavage of the N-Cα bond of the dehydroalanine residue to generate c- and z-ions. Because these fragment ion types are not commonly observed upon activation of positively charged even-electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S-alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas-phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S-alkyl cysteine residues and conversion of multiply-protonated peptides to radical cations. In the latter case, loss of radical side-chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue-specific backbone cleavage of polypeptide ions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alice L Pilo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Zhou Peng
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|