1
|
van den Berg SPH, Zoumaro‐Djayoon A, Yang F, Bokinsky G. Exogenous fatty acids inhibit fatty acid synthesis by competing with endogenously generated substrates for phospholipid synthesis in Escherichia coli. FEBS Lett 2025; 599:667-681. [PMID: 39739509 PMCID: PMC11891403 DOI: 10.1002/1873-3468.15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Exogenous fatty acids are directly incorporated into bacterial membranes, heavily influencing cell envelope properties, antibiotic susceptibility, and bacterial ecology. Here, we quantify fatty acid biosynthesis metabolites and enzymes of the fatty acid synthesis pathway to determine how exogenous fatty acids inhibit fatty acid synthesis in Escherichia coli. We find that acyl-CoA synthesized from exogenous fatty acids rapidly increases concentrations of long-chain acyl-acyl carrier protein (acyl-ACP), which inhibits fatty acid synthesis initiation. Accumulation of long-chain acyl-ACP is caused by competition with acyl-CoA for phospholipid synthesis enzymes. Furthermore, we find that transcriptional regulation rebalances saturated and unsaturated acyl-ACP while maintaining overall expression levels of fatty acid synthesis enzymes. Rapid feedback inhibition of fatty acid synthesis by exogenous fatty acids thus allows E. coli to benefit from exogenous fatty acids while maintaining fatty acid synthesis capacity. We hypothesize that this indirect feedback mechanism is ubiquitous across bacterial species.
Collapse
Affiliation(s)
- Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
- Present address:
Department of ImmunopathologySanquin Research AmsterdamAmsterdamThe Netherlands
| | - Adja Zoumaro‐Djayoon
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
2
|
Rex AN, Simpson BW, Bokinsky G, Trent MS. PlsX and PlsY: Additional roles beyond glycerophospholipid synthesis in Gram-negative bacteria. mBio 2024; 15:e0296924. [PMID: 39475235 PMCID: PMC11633183 DOI: 10.1128/mbio.02969-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
The unique asymmetry of the Gram-negative outer membrane, with glycerophospholipids (GPLs) in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet, works to resist external stressors and prevent the entry of toxic compounds. Thus, GPL and LPS synthesis must be tightly controlled to maintain the integrity of this essential structure. We sought to decipher why organisms like Escherichia coli possess two redundant pathways-PlsB and PlsX/Y-for synthesis of the GPL precursor lysophosphatidic acid (LPA). LPA is then converted by PlsC to the universal precursor for GPL synthesis, phosphatidic acid (PA). PlsB and PlsC are essential in E. coli, indicating they serve as the major pathway for PA synthesis. While loss of PlsX or PlsY individually has little consequence on the cell, the absence of both was lethal. To understand the synthetic lethality of this seemingly redundant PlsX/Y pathway, we performed a suppressor screen. Suppressor analysis indicated that ∆plsXY requires increased levels of glycerol-3-phosphate (G3P), a GPL precursor. In agreement, ∆plsXY required supplementation with G3P for survival. Furthermore, loss of PlsX dysregulated fatty acid synthesis, resulting in increased long-chain fatty acids. We show that although PlsX/Y together contribute to PA synthesis, they also contribute to the regulation of overall membrane biogenesis. Thus, synthetic lethality of ∆plsXY is multifactorial, suggesting that PlsX/Y has been maintained as a redundant system to fine-tune the synthesis of major lipids and promote cell envelope homeostasis.IMPORTANCEGram-negative bacteria must maintain optimal ratios of glycerophospholipids and lipopolysaccharide within the cell envelope for viability. Maintenance of proper outer membrane asymmetry allows for resistance to toxins and antibiotics. Here, we describe additional roles of PlsX and PlsY in Escherichia coli beyond lysophosphatidic acid synthesis, a key precursor of all glycerophospholipids. These findings suggest that PlsX and PlsY also play a larger role in impacting homeostasis of lipid synthesis.
Collapse
Affiliation(s)
- Audrey N. Rex
- Department of Microbiology, College of Art and Sciences; University of Georgia, Athens, Georgia, USA
| | - Brent W. Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - M. Stephen Trent
- Department of Microbiology, College of Art and Sciences; University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Hoogerland L, van den Berg SPH, Suo Y, Moriuchi YW, Zoumaro-Djayoon A, Geurken E, Yang F, Bruggeman F, Burkart MD, Bokinsky G. A temperature-sensitive metabolic valve and a transcriptional feedback loop drive rapid homeoviscous adaptation in Escherichia coli. Nat Commun 2024; 15:9386. [PMID: 39477942 PMCID: PMC11525553 DOI: 10.1038/s41467-024-53677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB. A second element is a transcription-based negative feedback loop that counteracts the temperature-sensitive valve. The combination of these elements accelerates membrane adaptation by causing a transient overshoot in the synthesis of saturated or unsaturated fatty acids following temperature shocks. This strategy is comparable to increasing the temperature of a water bath by adding water that is excessively hot rather than adding water at the desired temperature. These properties are captured in a mathematical model, which we use to show how hard-wired parameters calibrate the system to generate membrane compositions that maintain constant fluidity across temperatures. We hypothesize that core features of the E. coli system will prove to be ubiquitous features of homeoviscous adaptation systems.
Collapse
Affiliation(s)
- Loles Hoogerland
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Immunopathology, Sanquin Research Amsterdam, Amsterdam, The Netherlands
| | - Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Adja Zoumaro-Djayoon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Esther Geurken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Frank Bruggeman
- Systems Biology Lab, AIMMS/ALIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
4
|
Stanley HM, Trent MS. Loss of YhcB results in overactive fatty acid biosynthesis. mBio 2024; 15:e0079024. [PMID: 38742872 PMCID: PMC11237625 DOI: 10.1128/mbio.00790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Loss of the Escherichia coli inner membrane protein YhcB results in pleomorphic cell morphology and clear growth defects. Prior work suggested that YhcB was directly involved in cell division or peptidoglycan assembly. We found that loss of YhcB is detrimental in genetic backgrounds in which lipopolysaccharide (LPS) or glycerophospholipid (GPL) synthesis is altered. The growth defect of ΔyhcB could be rescued through inactivation of the Mla pathway, a system responsible for the retrograde transport of GPLs that are mislocalized to the outer leaflet of the outer membrane. Interestingly, this rescue was dependent upon the outer membrane phospholipase PldA that cleaves GPLs at the bacterial surface. Since the freed fatty acids resulting from PldA activity serve as a signal to the cell to increase LPS synthesis, this result suggested that outer membrane lipids are imbalanced in ΔyhcB. Mutations that arose in ΔyhcB populations during two independent suppressor screens were in genes encoding subunits of the acetyl coenzyme A carboxylase complex, which initiates fatty acid biosynthesis (FAB). These mutations fully restored cell morphology and reduced GPL levels, which were increased compared to wild-type bacteria. Growth of ΔyhcB with the FAB-targeting antibiotic cerulenin also increased cellular fitness. Furthermore, genetic manipulation of FAB and lipid biosynthesis showed that decreasing FAB rescued ΔyhcB filamentation, whereas increasing LPS alone could not. Altogether, these results suggest that YhcB may play a pivotal role in regulating FAB and, in turn, impact cell envelope assembly and cell division.IMPORTANCESynthesis of the Gram-negative cell envelope is a dynamic and complex process that entails careful coordination of many biosynthetic pathways. The inner and outer membranes are composed of molecules that are energy intensive to synthesize, and, accordingly, these synthetic pathways are under tight regulation. The robust nature of the Gram-negative outer membrane renders it naturally impermeable to many antibiotics and therefore a target of interest for antimicrobial design. Our data indicate that when the inner membrane protein YhcB is absent in Escherichia coli, the pathway for generating fatty acid substrates needed for all membrane lipid synthesis is dysregulated which leads to increased membrane material. These findings suggest a potentially novel regulatory mechanism for controlling the rate of fatty acid biosynthesis.
Collapse
Affiliation(s)
- Hannah M Stanley
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | - M Stephen Trent
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Ejaz SA, Aziz M, Wani TA, Al-Kahtani HM. Evaluation of mechanical features and antibacterial potential of fluoroquinolone against β-ketoacyl-ACP synthases (FabB, FabF & FabH) via computational approaches. Arch Biochem Biophys 2023:109674. [PMID: 37419193 DOI: 10.1016/j.abb.2023.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The synthesis of fatty acids, which are essential for the growth and survival of bacterial cells, is catalyzed by beta-keto acyl-ACP synthase I-III. Due to the significant differences between the bacterial ACP synthase enzyme and the mammalian enzyme, it may serve as a viable target for the development of potent anti-bacterial medications. In this study, a sophisticated molecular docking strategy was employed to target all three KAS enzymes. Initially, 1000 fluoroquinolone derivatives were obtained from PubChem database, along with the commonly used ciprofloxacin, and subjected to virtual screening against FabH, FabB, and FabF, respectively. Subsequently, molecular dynamics (MD) simulations were conducted to confirm the stability and reliability of the generated conformations. The compounds 155813629, 142486676, and 155567217 were found to exhibit potential molecular interactions against FabH, FabB, and FabF, respectively, with docking scores of -9.9, -8.9, and -9.9 kcal/mol. These scores outperformed the docking score of standard ciprofloxacin. Furthermore, MD simulations were used to assess the dynamic nature of molecular interactions in both physiological and dynamic settings. Throughout the simulated trajectory, all three complexes displayed favorable stability patterns. The findings of this investigation suggest that fluoroquinolone derivatives may serve as highly effective and selective inhibitors of the KAS enzyme.
Collapse
Affiliation(s)
- Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, the Islamia University of Bahawalpur, Saudi Arabia.
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, the Islamia University of Bahawalpur, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hammad M Al-Kahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Whaley SG, Frank MW, Rock CO. A short-chain acyl-CoA synthetase that supports branched-chain fatty acid synthesis in Staphylococcus aureus. J Biol Chem 2023; 299:103036. [PMID: 36806679 PMCID: PMC10026030 DOI: 10.1016/j.jbc.2023.103036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Staphylococcus aureus controls its membrane biophysical properties using branched-chain fatty acids (BCFAs). The branched-chain acyl-CoA precursors, utilized to initiate fatty acid synthesis, are derived from branched-chain ketoacid dehydrogenase (Bkd), a multiprotein complex that converts α-keto acids to their corresponding acyl-CoAs; however, Bkd KO strains still contain BCFAs. Here, we show that commonly used rich medias contain substantial concentrations of short-chain acids, like 2-methylbutyric and isobutyric acids, that are incorporated into membrane BCFAs. Bkd-deficient strains cannot grow in defined medium unless it is supplemented with either 2-methylbutyric or isobutyric acid. We performed a screen of candidate KO strains and identified the methylbutyryl-CoA synthetase (mbcS gene; SAUSA300_2542) as required for the incorporation of 2-methylbutyric and isobutyric acids into phosphatidylglycerol. Our mass tracing experiments show that isobutyric acid is converted to isobutyryl-CoA that flows into the even-chain acyl-acyl carrier protein intermediates in the type II fatty acid biosynthesis elongation cycle. Furthermore, purified MbcS is an ATP-dependent acyl-CoA synthetase that selectively catalyzes the activation of 2-methylbutyrate and isobutyrate. We found that butyrate and isovalerate are poor MbcS substrates and activity was not detected with acetate or short-chain dicarboxylic acids. Thus, MbcS functions to convert extracellular 2-methylbutyric and isobutyric acids to their respective acyl-CoAs that are used by 3-ketoacyl-ACP synthase III (FabH) to initiate BCFA biosynthesis.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
7
|
Whaley SG, Radka CD, Subramanian C, Frank MW, Rock CO. Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. J Biol Chem 2021; 297:101434. [PMID: 34801557 PMCID: PMC8666670 DOI: 10.1016/j.jbc.2021.101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher D Radka
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
8
|
Prince JP, Bolla JR, Fisher GLM, Mäkelä J, Fournier M, Robinson CV, Arciszewska LK, Sherratt DJ. Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nat Commun 2021; 12:6721. [PMID: 34795302 PMCID: PMC8602292 DOI: 10.1038/s41467-021-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Collapse
Affiliation(s)
- Josh P. Prince
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: Meiosis Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jani R. Bolla
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Gemma L. M. Fisher
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: DNA Motors Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jarno Mäkelä
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.168010.e0000000419368956Present Address: ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305 USA
| | - Marjorie Fournier
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK
| | - Lidia K. Arciszewska
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Sherratt
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
9
|
Posttranslational Control of PlsB Is Sufficient To Coordinate Membrane Synthesis with Growth in Escherichia coli. mBio 2020; 11:mBio.02703-19. [PMID: 32817111 PMCID: PMC7439487 DOI: 10.1128/mbio.02703-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How do bacterial cells grow without breaking their membranes? Although the biochemistry of fatty acid and membrane synthesis is well known, how membrane synthesis is balanced with growth and metabolism has remained unclear. This is partly due to the many control points that have been discovered within the membrane synthesis pathways. By precisely establishing the contributions of individual pathway enzymes, our results simplify the model of membrane biogenesis in the model bacterial species Escherichia coli. Specifically, we found that allosteric control of a single enzyme, PlsB, is sufficient to balance growth with membrane synthesis and to ensure that growing E. coli cells produce sufficient membrane. Identifying the signals that activate and deactivate PlsB will resolve the issue of how membrane synthesis is synchronized with growth. Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of Escherichia coli across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB. Due to feedback regulation of the fatty acid pathway, PlsB activity also indirectly controls synthesis of lipopolysaccharide, a major component of the outer membrane synthesized from a fatty acid synthesis intermediate. Surprisingly, concentrations of the enzyme that catalyzes the committed step of lipopolysaccharide synthesis (LpxC) do not differ across steady-state growth conditions, suggesting that steady-state lipopolysaccharide synthesis is modulated primarily via indirect control by PlsB. In contrast to steady-state regulation, we found that responses to environmental perturbations are triggered directly via changes in acetyl coenzyme A (acetyl-CoA) concentrations, which enable rapid adaptation. Adaptations are further modulated by ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong reliance of the membrane synthesis pathway upon posttranslational regulation ensures both the reliability and the responsiveness of membrane synthesis.
Collapse
|
10
|
Tian X, Yu Q, Wu W, Li X, Dai R. Comparative proteomic analysis of Escherichia coli O157:H7 following ohmic and water bath heating by capillary-HPLC-MS/MS. Int J Food Microbiol 2018; 285:42-49. [DOI: 10.1016/j.ijfoodmicro.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/12/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
|