1
|
Armengaud J, Cardon T, Cristobal S, Matallana-Surget S, Bertile F. Novel model organisms and proteomics for a better biological understanding. J Proteomics 2025; 316:105441. [PMID: 40216077 DOI: 10.1016/j.jprot.2025.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/26/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
The concept of « model organisms » is being revisited in the light of the latest advances in multi-omics technologies that can now capture the full range of molecular events that occur over time, regardless of the organism studied. Classic, well-studied models, such as Escherichia coli, Saccharomyces cerevisiae, to name a few, have long been valuable for hypothesis testing, reproducibility, and sharing common platforms among researchers. However, they are not suitable for all types of research. The complexity of unanswered questions in biology demands more elaborated systems, particularly to study plant and animal biodiversity, microbial ecosystems and their interactions with their hosts if any. More integrated systems, known as « holobionts », are emerging to describe and unify host organisms and associated microorganisms, providing an overview of all their possible interactions and trajectories. Comparative evolutionary proteomics offers interesting prospects for extrapolating knowledge from a few selected model organisms to others. This approach enables a deeper characterization of the diversity of proteins and proteoforms across the three branches of the tree of life, i.e. Bacteria, Archaea, and Eukarya. It also provides a powerful means to address remaining biological questions, such as identifying the key molecular players in organisms when they are confronted to environmental challenges, like anthropogenic toxicants, pathogens, dietary shifts or climate stressors, and proposing long-term sustainable solutions. SIGNIFICANCE: In this commentary, we reevaluated the concept of "model organisms" in light of advancements in multi-omics technologies. Traditional models have proven invaluable for hypothesis testing, reproducibility, and fostering shared research frameworks. However, we discussed that they are not universally applicable. To address complexities such as biodiversity and understand microbial ecosystems and their host interactions, integrated systems like "holobionts," which encompass host organisms and their associated microbes, are gaining prominence. Comparative evolutionary proteomics further enhances our understanding by enabling detailed exploration of protein diversity across organisms. This approach also facilitates the identification of critical molecular players in organisms facing environmental challenges, such as pollutants, pathogens, dietary changes, or climate stress, and contributes to developing sustainable long-term solutions.
Collapse
Affiliation(s)
- Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France.
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping 581 85, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Leioa 489 40, Spain
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, United Kingdom
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Laboratoire de Spectrométrie de Masse BioOrganique, Strasbourg 67000, France
| |
Collapse
|
2
|
Kim SJ, Park Y, Cho Y, Hwang H, Joo DJ, Huh KH, Lee J. Proteomics Profiling of Bilirubin Nanoparticle Treatment against Myocardial Ischemia-Reperfusion Injury. J Proteome Res 2024; 23:3858-3866. [PMID: 39121348 DOI: 10.1021/acs.jproteome.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
In myocardial infarction, ischemia-reperfusion injury (IRI) poses a significant challenge due to a lack of effective treatments. Bilirubin, a natural compound known for its anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic agent for IRI. Currently, there are no reports about proteomic studies related to IRI and bilirubin treatment. In this study, we explored the effects of bilirubin nanoparticles in a rat model of myocardial IRI. A total of 3616 protein groups comprising 76,681 distinct peptides were identified using LC-MS/MS, where we distinguished two kinds of protein groups: those showing increased expression in IRI and decreased expression in IRI with bilirubin treatment, and vice versa, accounting for 202 and 35 proteins, respectively. Our proteomic analysis identified significant upregulation in the Wnt and insulin signaling pathways and increased Golgi markers, indicating their role in mediating bilirubin nanoparticle's protective effects. This research contributes to the proteomic understanding of myocardial IRI and suggests bilirubin nanoparticles as a promising strategy for cardiac protection, warranting further investigation in human models.
Collapse
Affiliation(s)
- Soo Jin Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yeseul Park
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yuri Cho
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heeyoun Hwang
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyu Ha Huh
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Juhan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Paramasivan S, Ashick M, Dudley KJ, Satake N, Mills PC, Sadowski P, Nagaraj SH. VPBrowse: Genome-based representation of MS/MS spectra to quantify 10,000 bovine proteins. Proteomics 2024; 24:e2300431. [PMID: 38468111 DOI: 10.1002/pmic.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
SWATH is a data acquisition strategy acclaimed for generating quantitatively accurate and consistent measurements of proteins across multiple samples. Its utility for proteomics studies in nonlaboratory animals, however, is currently compromised by the lack of sufficiently comprehensive and reliable public libraries, either experimental or predicted, and relevant platforms that support their sharing and utilization in an intuitive manner. Here we describe the development of the Veterinary Proteome Browser, VPBrowse (http://browser.proteo.cloud/), an on-line platform for genome-based representation of the Bos taurus proteome, which is equipped with an interactive database and tools for searching, visualization, and building quantitative mass spectrometry assays. In its current version (VPBrowse 1.0), it contains high-quality fragmentation spectra acquired on QToF instrument for over 36,000 proteotypic peptides, the experimental evidence for over 10,000 proteins. Data can be downloaded in different formats to enable analysis using popular software packages for SWATH data processing whilst normalization to iRT scale ensures compatibility with diverse chromatography systems. When applied to published blood plasma dataset from the biomarker discovery study, the resource supported label-free quantification of additional proteins not reported by the authors previously including PSMA4, a tissue leakage protein and a promising candidate biomarker of animal's response to dehorning-related injury.
Collapse
Affiliation(s)
- Selvam Paramasivan
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mohamed Ashick
- LifeBytes India Private Limited, Bengaluru, Karnataka, India
| | - Kevin J Dudley
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Paul C Mills
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Ahmad P, Siqueira WL. Mass spectrometry-based proteomics profiling of dogs with and without oral diseases: a systematic review. BMC Oral Health 2024; 24:369. [PMID: 38519930 PMCID: PMC10958906 DOI: 10.1186/s12903-024-04096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Understanding the distinct proteomics profiles in dogs' oral biofluids enhances diagnostic and therapeutic insights for canine oral diseases, fostering cross-species translational research in dentistry and medicine. This study aimed to conduct a systematic review to investigate the similarities and differences between the oral biofluids' proteomics profile of dogs with and without oral diseases. METHODS PubMed, Web of Science, and Scopus were searched with no restrictions on publication language or year to address the following focused question: "What is the proteome signature of healthy versus diseased (oral) dogs' biofluids?" Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analyses of the most abundant proteins were performed. Moreover, protein-protein interaction analysis was conducted. The risk of bias (RoB) among the included studies was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Studies Reporting Prevalence Data. RESULTS In healthy dogs, the proteomic analysis identified 5,451 proteins, with 137 being the most abundant, predominantly associated with 'innate immune response'. Dogs with oral diseases displayed 6,470 proteins, with distinct associations: 'defense response to bacterium' (periodontal diseases), 'negative regulation of transcription' (dental calculus), and 'positive regulation of transcription' (oral tumors). Clustering revealed significant protein clusters in each case, emphasizing the diverse molecular profiles in health and oral diseases. Only six studies were provided to the JBI tool, as they encompassed case-control evaluations that compared healthy dogs to dogs with oral disease(s). All included studies were found to have low RoB (high quality). CONCLUSION Significant differences in the proteomics profiles of oral biofluids between dogs with and without oral diseases were found. The synergy of animal proteomics and bioinformatics offers a promising avenue for cross-species research, despite persistent challenges in result validation.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
5
|
Ahmad P, Marin LM, Lowe C, Katselis GS, Siqueira WL. Salivary protein homology between humans and dogs: Mass spectrometry-based proteomics analysis. J Dent 2024; 142:104855. [PMID: 38246308 DOI: 10.1016/j.jdent.2024.104855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE This benchmark study aimed to investigate sex-related differences based on the identification and characterization of the salivary proteome of healthy male and female dogs using mass spectrometry (MS) technique and a homology-driven approach to analyze salivary proteins in both human and dog species utilizing protein sequence alignment technique. METHODS Unstimulated whole saliva was collected from 10 healthy Beagles. After processing the samples and determining the total protein content, in-solution protein digestion was performed involving denaturation, reduction of disulfide bonds, alkylation, and removal of interfering compounds. Samples were analyzed using LC-ESI-MS/MS. RESULTS LC-ESI-MS/MS analysis identified 327 and 341 unique proteins in male and female dog saliva, respectively, of which 318 (97.25 %) in male dogs and 326 (95.60 %) in female dogs were characterized. Abundant shared proteins included albumin, BPI fold-containing family A member 2, and VWFD domain-containing protein. A notable uncharacterized protein, VWFD domain-containing protein, was among the most abundant in both sexes. Comparative analysis of 69 abundant shared proteins indicated an upregulation of CES5A, EFHD, GC, IGHM, LOC100653049, KRT10, LCP1, PGD, TPI1 in male dogs, while LOC100855593 was upregulated in female dogs. In total, 84 % (n = 229/274) and 86 % (n = 235/275) salivary proteins identified in male and female dogs, respectively, were homologous to human proteins, with an overall homology of 86 % (n = 364/423), including 15 with 100 % homology. CONCLUSION The study revealed clear differences in the salivary proteomics profile of healthy male and female dogs. However, most of the salivary proteins in both male and female dogs showed homology with human salivary proteins. CLINICAL RELEVANCE The identification of unique salivary proteome profiles in male and female dogs, coupled with substantial homology to human proteins, provides promising biomarkers for health assessment, highlighting its clinical significance for diagnostics and therapeutic exploration not only in veterinary and human dentistry, but across mammalian species.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada
| | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada
| | - Candace Lowe
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Canadian Centre for Rural and Agricultural Health, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada.
| |
Collapse
|
6
|
Kaldunski ML, Smith JR, Hayman GT, Brodie K, De Pons JL, Demos WM, Gibson AC, Hill ML, Hoffman MJ, Lamers L, Laulederkind SJF, Nalabolu HS, Thorat K, Thota J, Tutaj M, Tutaj MA, Vedi M, Wang SJ, Zacher S, Dwinell MR, Kwitek AE. The Rat Genome Database (RGD) facilitates genomic and phenotypic data integration across multiple species for biomedical research. Mamm Genome 2021; 33:66-80. [PMID: 34741192 PMCID: PMC8570235 DOI: 10.1007/s00335-021-09932-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023]
Abstract
Model organism research is essential for discovering the mechanisms of human diseases by defining biologically meaningful gene to disease relationships. The Rat Genome Database (RGD, ( https://rgd.mcw.edu )) is a cross-species knowledgebase and the premier online resource for rat genetic and physiologic data. This rich resource is enhanced by the inclusion and integration of comparative data for human and mouse, as well as other human disease models including chinchilla, dog, bonobo, pig, 13-lined ground squirrel, green monkey, and naked mole-rat. Functional information has been added to records via the assignment of annotations based on sequence similarity to human, rat, and mouse genes. RGD has also imported well-supported cross-species data from external resources. To enable use of these data, RGD has developed a robust infrastructure of standardized ontologies, data formats, and disease- and species-centric portals, complemented with a suite of innovative tools for discovery and analysis. Using examples of single-gene and polygenic human diseases, we illustrate how data from multiple species can help to identify or confirm a gene as involved in a disease and to identify model organisms that can be studied to understand the pathophysiology of a gene or pathway. The ultimate aim of this report is to demonstrate the utility of RGD not only as the core resource for the rat research community but also as a source of bioinformatic tools to support a wider audience, empowering the search for appropriate models for human afflictions.
Collapse
Affiliation(s)
- M L Kaldunski
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J R Smith
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - G T Hayman
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - K Brodie
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J L De Pons
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - W M Demos
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A C Gibson
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Hill
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M J Hoffman
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Lamers
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J F Laulederkind
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H S Nalabolu
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - K Thorat
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Thota
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Tutaj
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M A Tutaj
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Vedi
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J Wang
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Zacher
- Information Services, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M R Dwinell
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A E Kwitek
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Wu W, Dai RT, Bendixen E. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1608-1618. [PMID: 30624930 DOI: 10.1021/acs.jafc.8b05459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mass spectrometry (MS) has become essential for efficient and accurate quantification of proteins and proteomes and, thus, a key technology throughout all biosciences. However, validated MS methods are still scarce for meat quality research applications. The objective of this work was to develop and compare two targeted proteomic methods, namely, selected reaction monitoring (SRM) and sequential window acquisition of all theoretical spectra (SWATH), for the quantification of 11 bovine muscle proteins that may be indicators of meat color. Both methods require evaluation of spectra from proteotypic and quantotypic peptides, and we here report our evaluation of which peptides and MS parameters are best suited for robust quantification of these 11 proteins. We observed that the SRM approach provides better reproducibility, linearity, and sensitivity than SWATH and is therefore ideal for targeted quantification of low-abundance proteins, while the SWATH approach provides a more time-efficient method for targeted protein quantification of high-abundance proteins and, additionally, supports the search for novel biomarkers.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua East Road , Haidian District, Beijing 100083 , P. R. China
- Department of Molecular Biology and Genetics, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus , Denmark
| | - Rui-Tong Dai
- College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua East Road , Haidian District, Beijing 100083 , P. R. China
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus , Denmark
| |
Collapse
|
8
|
Paik YK, Overall CM, Deutsch EW, Van Eyk JE, Omenn GS. Progress and Future Direction of Chromosome-Centric Human Proteome Project. J Proteome Res 2018; 16:4253-4258. [PMID: 29191025 DOI: 10.1021/acs.jproteome.7b00734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This special issue of JPR celebrates the fifth anniversary of the Chromosome-Centric Human Proteome Project (C-HPP). We present 27 manuscripts in four categories: (i) Metrics of Progress and Resources, (ii) Missing Protein Detection and Validation, (iii) Analytical Methods and Quality Assessment, and (iv) Protein Functions and Disease. We briefly introduce key messages from each paper, mostly from C-HPP teams and some from the Biology and Disease-driven HPP. From the first few months of the C-HPP NeXt-MP50 Missing Proteins Challenge, authors report 73 missing protein detections that meet the HPP guidelines using several novel approaches. Finally, we discuss future directions.
Collapse
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center and Department of Biochemistry, Yonsei University
| | - Christopher M Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia
| | | | - Jennifer E Van Eyk
- Advanced Clinical BioSystems Research Institute , Department of Medicine, Cedars-Sinai Medical Centre
| | - Gilbert S Omenn
- Institute for Systems Biology.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan
| |
Collapse
|
9
|
Bilić P, Kuleš J, Galan A, Gomes de Pontes L, Guillemin N, Horvatić A, Festa Sabes A, Mrljak V, Eckersall PD. Proteomics in Veterinary Medicine and Animal Science: Neglected Scientific Opportunities with Immediate Impact. Proteomics 2018; 18:e1800047. [DOI: 10.1002/pmic.201800047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Petra Bilić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Josipa Kuleš
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Asier Galan
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Leticia Gomes de Pontes
- Botucatu Medical School; Sao Paulo State University (UNESP); Avenida José Barbosa de Barros, 1780; Botucatu 18610-307 Brazil
| | - Nicolas Guillemin
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Anita Horvatić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Amanda Festa Sabes
- Department of Clinical and Veterinary Surgery; Faculty of Agrarian and Veterinary Sciences; Via de Acesso Paulo Donato Castellane s/n. 14884-900 Jaboticabal São Paulo Brazil
| | - Vladimir Mrljak
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Peter David Eckersall
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medicine; Veterinary Medicine and Life Sciences; University of Glasgow; Glasgow G61 1QH UK
| |
Collapse
|