1
|
Shekh S, Dhannura S, Dhurjad P, Ravali C, M M S, Kakkat S, Vishwajyothi, Vijayasarathy M, Sonti R, Gowd KH. Structure-aided function assignment to the transcriptomic conopeptide Am931. Toxicon 2024; 250:108087. [PMID: 39237042 DOI: 10.1016/j.toxicon.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Implementation of the next-generation technologies for gene sequencing of venom duct transcriptome has provided a large number of peptide sequences of marine cone snails. Emerging technologies on computational platforms are now rapidly evolving for the accurate predictions of the 3D structure of the polypeptide using the primary sequence. The current report aims to integrate the information derived from these two technologies to develop the concept of structure-aided function assignment of Conus peptides. The proof of the concept was demonstrated using the transcriptomic peptide Am931 of C. amadis. The 3D structure of Am931 was computed using Density Functional Theory (DFT) and the quality of the predicted structure was confirmed using 2D NMR spectroscopy of the corresponding synthetic peptide. The computed structure of Am931 aligns with the active site motif of thioredoxins, possess catalytic disulfide conformation of (+, -)AntiRHHook and selectively modulate the N-terminal Cys3 thiol. These structural features indicate that Am931 may act as a disulfide isomerase and modulate the oxidative folding of conotoxins. Synthetic peptide Am931 provides proof-of-function by exhibiting catalytic activity on the oxidative folding of α-conotoxin ImI and improving the yield of native globular fold. The approach of integration of new technologies in the Conus peptide research may help to accelerate the discovery pipeline of new/improved conotoxin functional.
Collapse
Affiliation(s)
- Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India.
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Challa Ravali
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Spoorti M M
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Sreepriya Kakkat
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Vishwajyothi
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, Karnataka, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India.
| |
Collapse
|
2
|
Vijayasarathy M, Kumar S, Das R, Balaram P. Cysteine-free cone snail venom peptides: Classification of precursor proteins and identification of mature peptides. J Pept Sci 2024; 30:e3554. [PMID: 38009400 DOI: 10.1002/psc.3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.
Collapse
Affiliation(s)
- Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sanjeev Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Rajdeep Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
3
|
Shekh S, Dhurjad P, Vijayasarathy M, Dolle A, Dhannura S, Sahoo DK, Sonti R, Gowd KH. Oxidative Folding Catalysts of Conotoxins Derived from the Venom Duct Transcriptome of C. frigidus and C. amadis. Biochemistry 2023; 62:3061-3075. [PMID: 37862039 DOI: 10.1021/acs.biochem.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Two novel redox conopeptides with proline residues outside and within the active site disulfide loop were derived from the venom duct transcriptome of the marine cone snails Conus frigidus and Conus amadis. Mature peptides with possible post-translational modification of 4-trans-hydroxylation of proline, namely, Fr874, Fr890[P1O], Fr890[P2O], Fr906, Am1038, and Am1054, have been chemically synthesized and characterized using mass spectrometry. The estimated reduction potential of cysteine disulfides of synthetic peptides varied from -298 to -328 mV, similar to the active site cysteine disulfide motifs of the redox family of proteins. Fr906/Am1054 exhibited pronounced catalytic activity and assisted in improving the yields of natively folded globular form α-conotoxin ImI. Three-dimensional (3D) structures of the redox conopeptides were optimized using computational methods and verified by 2D-ROESY NMR spectroscopy: C. frigidus peptides adopt an N-terminal helical fold and C. amadis peptides adopt distinct structures based on the Phe4-Pro/Hyp5 peptide bond configuration. The shift in the cis-trans configuration of the Phe4-Pro/Hyp5 peptide bond of Am1038/Am1054 was observed between reduced free thiol and oxidized disulfide forms of the optimized peptides. The report confirms the position-specific effect of hydroxyproline on the oxidative folding of conotoxins and sequence diversity of redox conopeptides in the venom duct of cone snails.
Collapse
Affiliation(s)
- Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Deepak Kumar Sahoo
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| |
Collapse
|
4
|
Liu Y, Zhao Z, Song Y, Yin Y, Wu F, Jiang H. Usage of Cell-Free Protein Synthesis in Post-Translational Modification of μ-Conopeptide PIIIA. Mar Drugs 2023; 21:421. [PMID: 37623702 PMCID: PMC10455749 DOI: 10.3390/md21080421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The post-translational modifications of conopeptides are the most complicated modifications to date and are well-known and closely related to the activity of conopeptides. The hydroxylation of proline in conopeptides affects folding, structure, and biological activity, and prolyl 4 hydroxylase has been characterized in Conus literatus. However, the hydroxylation machinery of proline in conopeptides is still unclear. In order to address the hydroxylation mechanism of proline in μ-PIIIA, three recombinant plasmids encoding different hybrid precursors of μ-PIIIA were constructed and crossly combined with protein disulfide isomerase, prolyl 4 hydroxylase, and glutaminyl cyclase in a continuous exchange cell-free protein system. The findings showed that prolyl 4 hydroxylase might recognize the propeptide of μ-PIIIA to achieve the hydroxylation of proline, while the cyclization of glutamate was also formed. Additionally, in Escherichia coli, the co-expression plasmid encoding prolyl 4 hydroxylase and the precursor of μ-PIIIA containing pro and mature regions were used to validate the continuous exchange cell-free protein system. Surprisingly, in addition to the two hydroxyproline residues and one pyroglutamyl residue, three disulfide bridges were formed using Trx as a fusion tag, and the yield of the fusion peptide was approximately 20 mg/L. The results of electrophysiology analysis indicated that the recombinant μ-PIIIA without C-terminal amidate inhibited the current of hNaV1.4 with a 939 nM IC50. Our work solved the issue that it was challenging to quickly generate post-translationally modified conopeptides in vitro. This is the first study to demonstrate that prolyl 4 hydroxylase catalyzes the proline hydroxylation through recognition in the propeptide of μ-PIIIA, and it will provide a new way for synthesizing multi-modified conopeptides with pharmacological activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
5
|
Tran K, Sainsily X, Côté J, Coquerel D, Couvineau P, Saibi S, Haroune L, Besserer-Offroy É, Flynn-Robitaille J, Resua Rojas M, Murza A, Longpré JM, Auger-Messier M, Lesur O, Bouvier M, Marsault É, Boudreault PL, Sarret P. Size-Reduced Macrocyclic Analogues of [Pyr 1]-apelin-13 Showing Negative Gα 12 Bias Still Produce Prolonged Cardiac Effects. J Med Chem 2022; 65:531-551. [PMID: 34982553 DOI: 10.1021/acs.jmedchem.1c01708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported a series of macrocyclic analogues of [Pyr1]-apelin-13 (Ape13) with increased plasma stability and potent APJ agonist properties. Based on the most promising compound in this series, we synthesized and then evaluated novel macrocyclic compounds of Ape13 to identify agonists with specific pharmacological profiles. These efforts led to the development of analogues 39 and 40, which possess reduced molecular weight (MW 1020 Da vs Ape13, 1534 Da). Interestingly, compound 39 (Ki 0.6 nM), which does not activate the Gα12 signaling pathway while maintaining potency and efficacy similar to Ape13 to activate Gαi1 (EC50 0.8 nM) and β-arrestin2 recruitment (EC50 31 nM), still exerts cardiac actions. In addition, analogue 40 (Ki 5.6 nM), exhibiting a favorable Gα12-biased signaling and an increased in vivo half-life (t1/2 3.7 h vs <1 min of Ape13), produces a sustained cardiac response up to 6 h after a single subcutaneous bolus injection.
Collapse
Affiliation(s)
- Kien Tran
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - David Coquerel
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Couvineau
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montreal H3T 1J4, Québec, Canada
| | - Sabrina Saibi
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Lounès Haroune
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Élie Besserer-Offroy
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California 90095, United States
| | | | - Martin Resua Rojas
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Mannix Auger-Messier
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michel Bouvier
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montreal H3T 1J4, Québec, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| |
Collapse
|
6
|
Abalde S, Dutertre S, Zardoya R. A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail Cylinder ammiralis (Caenogastropoda: Conidae). Toxins (Basel) 2021; 13:toxins13090642. [PMID: 34564647 PMCID: PMC8472973 DOI: 10.3390/toxins13090642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or hunt prey. Here, the transcriptome of the venom gland and the proteomes of the predation-evoked and defensive venoms of the molluscivorous cone snail Cylinder ammiralis were catalogued. A total of 242 venom-related transcripts were annotated. The conotoxin superfamilies presenting more different peptides were O1, O2, T, and M, which also showed high expression levels (except T). The three precursors of the J superfamily were also highly expressed. The predation-evoked and defensive venoms showed a markedly distinct profile. A total of 217 different peptides were identified, with half of them being unique to one venom. A total of 59 peptides ascribed to 23 different protein families were found to be exclusive to the predatory venom, including the cono-insulin, which was, for the first time, identified in an injected venom. A total of 43 peptides from 20 protein families were exclusive to the defensive venom. Finally, comparisons of the relative abundance (in terms of number of peptides) of the different conotoxin precursor superfamilies showed that most of them present similar abundance regardless of the diet.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
- Correspondence:
| | | | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| |
Collapse
|
7
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Dolle A, Vijayasarathy M, Shekh S, Hunashal Y, Reddy KKA, Prakash S, Rana A, Biswal HS, Raghothama S, Gowd KH. The Redox-Active Conopeptide Derived from the Venom Duct Transcriptome of Conus lividus Assists in the Oxidative Folding of Conotoxin. Biochemistry 2021; 60:1299-1311. [PMID: 33829763 DOI: 10.1021/acs.biochem.1c00090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrapeptides Li504 and Li520, differing in the modification of the 4-trans-hydroxylation of proline, are novel conopeptides derived from the venom duct transcriptome of the marine cone snail Conus lividus. These predicted mature peptides are homologous to the active site motif of oxidoreductases that catalyze the oxidation, reduction, and rearrangement of disulfide bonds in peptides and proteins. The estimated reduction potential of the disulfide of Li504 and Li520 is within the range of disulfide reduction potentials of oxidoreductases, indicating that they may catalyze the oxidative folding of conotoxins. Conformational features of Li504 and Li520 include the trans configuration of the Cys1-Pro2/Hyp2 peptide bond with a type 1 turn that is similar to the active site motif of glutaredoxin that regulates the oxidation of cysteine thiols to disulfides. Li504- and Li520-assisted oxidative folding of α-conotoxin ImI confirms that Li520 improves the yield of the natively folded peptide by concomitantly decreasing the yield of the non-native disulfide isomer and thus acts as a miniature disulfide isomerase. The geometry of the Cys1-Hyp2 peptide bond of Li520 shifts between the trans and cis configurations in the disulfide form and thiol/thiolate form, which regulates the deprotonation of the N-terminal cysteine residue. Hydrogen bonding of the hydroxyl group of 4-trans-hydroxyproline with the interpeptide chain unit in the mixed disulfide form may play a vital role in shifting the geometry of the Cys1-Hyp2 peptide bond from cis to trans configuration. The Li520 conopeptide together with similar peptides derived from other species may constitute a new family of "redox-active" conopeptides that are integral components of the oxidative folding machinery of conotoxins.
Collapse
Affiliation(s)
- Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | | | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Yamanappa Hunashal
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - K Kasi Amarnath Reddy
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Sunita Prakash
- Proteomic Facility, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India
| | | | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| |
Collapse
|
9
|
A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes. J Mol Biol 2021; 433:166960. [PMID: 33774034 DOI: 10.1016/j.jmb.2021.166960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Proteins with sequence or structure similar to those of di-Zn exopeptidases are usually classified as the M28-family enzymes, including the mammalian-type glutaminyl cyclases (QCs). QC catalyzes protein N-terminal pyroglutamate formation, a posttranslational modification important under many physiological and pathological conditions, and is a drug target for treating neurodegenerative diseases, cancers and inflammatory disorders. Without functional characterization, mammalian QCs and their orthologs remain indistinguishable at the sequence and structure levels from other M28-family proteins, leading to few reported QCs. Here, we show that a low-barrier carboxylic-acid hydrogen-bond network (CAHBN) is required for QC activity and discriminates QCs from M28-family peptidases. We demonstrate that the CAHBN-containing M28 peptidases deposited in the PDB are indeed QCs. Our analyses identify several thousands of QCs from the three domains of life, and we enzymatically and structurally characterize several. For the first time, the interplay between a CAHBN and the binuclear metal-binding center of mammalian QCs is made clear. We found that the presence or absence of CAHBN is a key discriminator for the formation of either the mono-Zn QCs or the di-Zn exopeptidases. Our study helps explain the possible roles of QCs in life.
Collapse
|
10
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
11
|
Rajesh RP, Franklin JB, Badsha I, Arjun P, Jain RP, Vignesh MS, Kannan RR. Proteome based de novo sequencing of novel conotoxins from marine molluscivorous cone snail Conus amadis and neurological activities of its natural venom in zebrafish model. Protein Pept Lett 2019; 26:819-833. [PMID: 31203793 DOI: 10.2174/0929866526666190614144006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Conus amadis is a carnivorous snail found abundantly in coastal waters of India. They are equipped with potent chemical arsenal made of neurotoxic peptide concoction used for predation and competition. In this study, we have identified 19 novel conotoxins containing 1, 2 & 3 disulfides, belonging to different classes, from a molluscivorous cone snail Conus amadis using proteome based MALDI-TOF and LC-MS-MS analysis. Among them, 2 novel contryphans, 3 T-superfamily conotoxin, 2 A-superfamily conotoxins and 2 Mini M-Superfamily conotoxins were sequenced to its amino acid level from the fragmented spectrum of singly and doubly charged parent ions using de novo sequencing strategies. ama1054, a contryphan peptide toxin, possesses post translationally modified bromo tryptophan at its seventh position. Except ama1251, all the sequenced peptide toxins possess modified C-terminal amidation. Moreover, we have screened the crude venom for the presence of biological function in zebrafish model. Crude venom exhibited anticonvulsant properties in pentylenetetrazole-induced seizure in zebrafish larvae which suggested anti-epileptic properties of the venom cocktail. Acetyl cholinesterase activity was also identified in the venom complex.
Collapse
Affiliation(s)
- R P Rajesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012. India
| | - Jayaseelan Benjamin Franklin
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103. India
| | - Iffath Badsha
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - P Arjun
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - Ruchi P Jain
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - M S Vignesh
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - R Rajesh Kannan
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| |
Collapse
|