1
|
Tan YC, Low TY, Lee PY, Lim LC. Single-cell proteomics by mass spectrometry: Advances and implications in cancer research. Proteomics 2024; 24:e2300210. [PMID: 38727198 DOI: 10.1002/pmic.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
Cancer harbours extensive proteomic heterogeneity. Inspired by the prior success of single-cell RNA sequencing (scRNA-seq) in characterizing minute transcriptomics heterogeneity in cancer, researchers are now actively searching for information regarding the proteomics counterpart. Therefore recently, single-cell proteomics by mass spectrometry (SCP) has rapidly developed into state-of-the-art technology to cater the need. This review aims to summarize application of SCP in cancer research, while revealing current development progress of SCP technology. The review also aims to contribute ideas into research gaps and future directions, ultimately promoting the application of SCP in cancer research.
Collapse
Affiliation(s)
- Yong Chiang Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Rajczewski AT, Jagtap PD, Griffin TJ. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev Proteomics 2022; 19:165-181. [PMID: 35466851 PMCID: PMC9613604 DOI: 10.1080/14789450.2022.2070476] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mass spectrometry-based proteomics reveals dynamic molecular signatures underlying phenotypes reflecting normal and perturbed conditions in living systems. Although valuable on its own, the proteome has only one level of moleclar information, with the genome, epigenome, transcriptome, and metabolome, all providing complementary information. Multi-omic analysis integrating information from one or more of these other domains with proteomic information provides a more complete picture of molecular contributors to dynamic biological systems. AREAS COVERED Here, we discuss the improvements to mass spectrometry-based technologies, focused on peptide-based, bottom-up approaches that have enabled deep, quantitative characterization of complex proteomes. These advances are facilitating the integration of proteomics data with other 'omic information, providing a more complete picture of living systems. We also describe the current state of bioinformatics software and approaches for integrating proteomics and other 'omics data, critical for enabling new discoveries driven by multi-omics. EXPERT COMMENTARY Multi-omics, centered on the integration of proteomics information with other 'omic information, has tremendous promise for biological and biomedical studies. Continued advances in approaches for generating deep, reliable proteomic data and bioinformatics tools aimed at integrating data across 'omic domains will ensure the discoveries offered by these multi-omic studies continue to increase.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Coauthor, Research Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Ma N, Du H, Ma G, Yang W, Han Y, Hu Q, Xiao H. Characterization of the Immunomodulatory Mechanism of a Pleurotus eryngii Protein by Isobaric Tags for Relative and Absolute Quantitation Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13189-13199. [PMID: 32227945 DOI: 10.1021/acs.jafc.0c00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PEP 1b is a novel immunoregulatory protein isolated from Pleurotus eryngii, a popular edible mushroom. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) approach and bioinformatics analysis were used to characterize the PEP-1b-induced proteome alterations in Raw 264.7 macrophage cells, to comprehensively excavate the molecular mechanisms involved in the immunoregulatory effects of PEP 1b. In comparison to the control group, PEP 1b treatment significantly changed the expression of 292 proteins, including 191 upregulated and 101 downregulated proteins. Bioinformatics analysis showed that PEP-1b-regulated proteins were involved in 437 biological process domains, 131 cellular component domains, and 90 molecular function domains. Moreover, PEP 1b played the role of immunomodulator by mainly modulating the Rap1 signaling pathway, Wnt signaling pathway, Ras signaling pathway, and PI3K-Akt signaling pathway. Interestingly, PEP 1b regulated the proteins involved in the immune system, signal transduction, and transport processes, which were related to the immunoregulatory effects of PEP 1b. The western blotting analysis confirmed that the immune-boosting activities of PEP 1b were associated with modulating the expression of Sqstm1, Cox2, Rap1b, and Pyk2. The current research provided a comprehensive understanding of the immunoregulatory effects and molecular mechanisms involved in the PEP 1b supplementation.
Collapse
Affiliation(s)
- Ning Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hengjun Du
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gaoxing Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wenjian Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Frost DC, Feng Y, Li L. 21-plex DiLeu Isobaric Tags for High-Throughput Quantitative Proteomics. Anal Chem 2020; 92:8228-8234. [PMID: 32401496 DOI: 10.1021/acs.analchem.0c00473] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isobaric tags enable multiplexed quantitative analysis of many biological samples in a single LC-MS/MS experiment. As a cost-effective alternative to expensive commercial isobaric tagging reagents, we developed our own custom N,N-dimethylleucine "DiLeu" isobaric tags for quantitative proteomics. Here, we present a new generation of DiLeu tags that achieves 21-plex quantification in high-resolution HCD MS/MS spectra via distinct reporter ions that differ in mass from each other by a minimum of 3 mDa. The 21-plex set retains the compact tag structure and existing isotopologues of the 12-plex set but includes nine new reporter variants formulated with unique configurations of 13C, 15N, and 2H stable isotopes, each synthesized in-house via a stepwise N-monomethylation synthesis strategy using readily available reagents. Thus, multiplexing capacity is expanded significantly, while preserving the performance and low cost of the previous implementation. We show that 21-plex DiLeu tags generate strong reporter ions following HCD fragmentation of labeled peptides acquired on Orbitrap platforms at a minimum of 60,000 resolving power (at 400 m/z), and we demonstrate accurate 21-plex quantification of labeled K562 human cell line protein digests via single-shot nanoLC-MS/MS analysis on a Q Exactive HF system.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yu Feng
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [PMID: 31145639 DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Affiliation(s)
- Albert B. Arul
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Renã A. S. Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|