1
|
Tapken I, Schweitzer T, Paganin M, Schüning T, Detering NT, Sharma G, Niesert M, Saffari A, Kuhn D, Glynn A, Cieri F, Santonicola P, Cannet C, Gerstner F, Faller KME, Huang YT, Kothary R, Gillingwater TH, Di Schiavi E, Simon CM, Hensel N, Ziegler A, Viero G, Pich A, Claus P. The systemic complexity of a monogenic disease: the molecular network of spinal muscular atrophy. Brain 2025; 148:580-596. [PMID: 39183150 DOI: 10.1093/brain/awae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Theresa Schweitzer
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | | | - Tobias Schüning
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Nora T Detering
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Gaurav Sharma
- CNR Unit, Institute of Biophysics, Trento 38123, Italy
| | - Moritz Niesert
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Afshin Saffari
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover 30625, Germany
| | - Amy Glynn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Federica Cieri
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
- Department of Biology, University of Naples Federico II, Naples 80131, Italy
| | - Pamela Santonicola
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Rashmi Kothary
- Faculty of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Elia Di Schiavi
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Niko Hensel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Andreas Ziegler
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
2
|
Sharma G, Paganin M, Lauria F, Perenthaler E, Viero G. The SMN-ribosome interplay: a new opportunity for Spinal Muscular Atrophy therapies. Biochem Soc Trans 2024; 52:465-479. [PMID: 38391004 PMCID: PMC10903476 DOI: 10.1042/bst20231116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The underlying cause of Spinal Muscular Atrophy (SMA) is in the reduction of survival motor neuron (SMN) protein levels due to mutations in the SMN1 gene. The specific effects of SMN protein loss and the resulting pathological alterations are not fully understood. Given the crucial roles of the SMN protein in snRNP biogenesis and its interactions with ribosomes and translation-related proteins and mRNAs, a decrease in SMN levels below a specific threshold in SMA is expected to affect translational control of gene expression. This review covers both direct and indirect SMN interactions across various translation-related cellular compartments and processes, spanning from ribosome biogenesis to local translation and beyond. Additionally, it aims to outline deficiencies and alterations in translation observed in SMA models and patients, while also discussing the implications of the relationship between SMN protein and the translation machinery within the context of current and future therapies.
Collapse
|
3
|
Cai J, Tao Y, Xing L, Zhang J, Wang Z, Zhu Z, Zhang W. Studying Antifatigue Mechanism of Tyr-Pro-Leu-Pro in Exercise Mice Using Label-Free Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2178-2192. [PMID: 38259150 DOI: 10.1021/acs.jafc.3c07642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In our previous study, yeast-derived peptide Tyr-Pro-Leu-Pro (YPLP) was found to prolong treadmill time and relieve muscle fatigue in ICR mice. The present study aimed to further investigate the antifatigue mechanism of YPLP. Three doses of YPLP (10, 25, and 50 mg/kg·d) were given to exercise mice for 4 weeks. Results showed that YPLP reduced the oxidative response via the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and promoted energy metabolism through the AMP-activated protein kinase (AMPK) pathway. Label-free proteomics results showed that 81 differential abundance proteins (DAPs) were regulated by high-dose YPLP. These DAPs belonged to proteasome, mitochondrial, and muscle proteins. YPLP was mainly involved in proteasome, aminoacyl-tRNA biosynthesis, focal adhesion, and MAPK signal pathways to enhance muscle endurance. Furthermore, real-time quantitative PCR and Western blotting results proved that YPLP upregulated Psmd14 expression and downregulated p38 MAPK expression. Overall, this study revealed the mechanism behind YPLP to alleviate exercise fatigue.
Collapse
Affiliation(s)
- Jiaming Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ye Tao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jian Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zihan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
4
|
Eagleson KL, Levitt P. Alterations in the Proteome of Developing Neocortical Synaptosomes in the Absence of MET Signaling Revealed by Comparative Proteomics. Dev Neurosci 2023; 45:126-138. [PMID: 36882009 PMCID: PMC10239366 DOI: 10.1159/000529981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Alterations in the expression of genes encoding proteins involved in synapse formation, maturation, and function are a hallmark of many neurodevelopmental and psychiatric disorders. For example, there is reduced neocortical expression of the MET receptor tyrosine kinase (MET) transcript and protein in Autism Spectrum Disorder (ASD) and Rett syndrome. Preclinical in vivo and in vitro models manipulating MET signaling reveal that the receptor modulates excitatory synapse development and maturation in select forebrain circuits. The molecular adaptations underlying the altered synaptic development remain unknown. We performed a comparative mass spectrometry analysis of synaptosomes generated from the neocortex of wild type and Met null mice during the peak of synaptogenesis (postnatal day 14; data are available from ProteomeXchange with identifier PXD033204). The analyses revealed broad disruption of the developing synaptic proteome in the absence of MET, consistent with the localization of MET protein in pre- and postsynaptic compartments, including proteins associated with the neocortical synaptic MET interactome and those encoded by syndromic and ASD risk genes. In addition to an overrepresentation of altered proteins associated with the SNARE complex, multiple proteins in the ubiquitin-proteasome system and associated with the synaptic vesicle, as well as proteins that regulate actin filament organization and synaptic vesicle exocytosis/endocytosis, were disrupted. Taken together, the proteomic changes are consistent with structural and functional changes observed following alterations in MET signaling. We hypothesize that the molecular adaptations following Met deletion may reflect a general mechanism that produces circuit-specific molecular changes due to loss or reduction of synaptic signaling proteins.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pat Levitt
- Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,
| |
Collapse
|
5
|
Di Paolo A, Garat J, Eastman G, Farias J, Dajas-Bailador F, Smircich P, Sotelo-Silveira JR. Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:686722. [PMID: 34248504 PMCID: PMC8267896 DOI: 10.3389/fncel.2021.686722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Polo de Desarrollo Universitario “Espacio de Biología Vegetal del Noreste”, Centro Universitario Regional Noreste, Universidad de la República (UdelaR), Tacuarembó, Uruguay
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, Nottingham, United Kingdom
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
6
|
Nguyen TT, Dammer EB, Owino SA, Giddens MM, Madaras NS, Duong DM, Seyfried NT, Hall RA. Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. J Proteome Res 2021; 19:744-755. [PMID: 31903766 DOI: 10.1021/acs.jproteome.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.
Collapse
Affiliation(s)
- TrangKimberly Thu Nguyen
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Sharon A Owino
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Michelle M Giddens
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Nora S Madaras
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| |
Collapse
|
7
|
The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. Int J Mol Sci 2020; 21:ijms21176429. [PMID: 32899400 PMCID: PMC7503226 DOI: 10.3390/ijms21176429] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases. The ubiquitin-proteasome system (UPS) plays a fundamental role in maintaining protein homeostasis, being involved in protein degradation, among other cellular functions. Through a cascade of enzymatic reactions, proteins are ubiquitinated, tagged, and translocated to the proteasome to be degraded. Within the ubiquitin system, we can find three main groups of enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin-protein ligases). Only the ubiquitinated proteins with specific chain linkages (such as K48) will be degraded by the UPS. In this review, we describe the relevance of this system in NMDs, summarizing the UPS proteins that have been involved in pathological conditions and neuromuscular disorders, such as Spinal Muscular Atrophy (SMA), Charcot-Marie-Tooth disease (CMT), or Duchenne Muscular Dystrophy (DMD), among others. A better knowledge of the processes involved in the maintenance of proteostasis may pave the way for future progress in neuromuscular disorder studies and treatments.
Collapse
|