1
|
Vignoli A, Sticchi E, Piccardi B, Palumbo V, Sarti C, Sodero A, Arba F, Fainardi E, Gori AM, Giusti B, Kura A, Tenori L, Baldereschi M. Predicting reperfusion injury and functional status after stroke using blood biomarkers: the STROKELABED study. J Transl Med 2025; 23:491. [PMID: 40307929 PMCID: PMC12042387 DOI: 10.1186/s12967-025-06498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Ischemic stroke is a leading cause of disability and mortality, particularly among the elderly. Recanalization therapies, including thrombolysis and thrombectomy, are essential for restoring blood flow and saving ischemic tissue. However, these interventions may trigger reperfusion injury, worsening inflammation and tissue damage, leading to blood-brain-barrier (BBB) disruption, cerebral edema (CE) and adverse functional outcomes. Here we propose a model integrating circulating inflammatory biomarkers with metabolomic and lipoproteomic data able to help clinicians in predicting BBB disruption, CE at 24 h post stroke onset and poor post-stroke functional outcome (Modified Rankin Scale (mRS > 2). METHODS Peripheral blood from 87 patients was collected at admission and 24 h after stroke onset. The logistic LASSO regression algorithm was employed to identify the optimal combination of metabolites, lipoprotein-related parameters and circulating biomarkers to discriminate the groups of interest at the two time-points. RESULTS Multivariable logistic regression models included as covariates: age, sex, onset-to-treatment time, treatment with lipid-lowering medications before stroke, history of heart failure, history of atrial fibrillation and history of diabetes. The regression models showed that methionine, acetate, GlyA and MMP-2 were significant predictors of BBB disruption, methionine, acetate, TIMP-1 and CXCL-10 predicted 24-hours CE, whereas a poor functional outcome at three months was predicted by CXCL-10, IL-12 and LDL-5. CONCLUSIONS As stroke has a heterogeneous pathophysiology, a personalized approach based on biomarkers, as presented in this study, shown to be effective in tackling patient individual risk and could help in developing novel diagnostic, prognostic, and therapeutic neuroprotective strategies for the management of stroke patients.
Collapse
Affiliation(s)
- Alessia Vignoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Elena Sticchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Benedetta Piccardi
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, Florence, 50134, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, Florence, 50134, Italy
| | - Cristina Sarti
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, Florence, 50134, Italy
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, Florence, 50139, Italy
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, Florence, 50139, Italy
| | - Francesco Arba
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, Florence, 50134, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences, Serio" University of Florence, Viale Morgagni 50, Florence, 50134, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Leonardo Tenori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy.
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
2
|
Vignoli A, Bellomo G, Paoletti FP, Luchinat C, Tenori L, Parnetti L. Studying Alzheimer's disease through an integrative serum metabolomic and lipoproteomic approach. J Transl Med 2025; 23:119. [PMID: 39871333 PMCID: PMC11773822 DOI: 10.1186/s12967-025-06148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent neurodegenerative disorder worldwide. The great variability in disease evolution and the incomplete understanding of the molecular mechanisms underlying AD make it difficult to predict when a patient will convert from prodromal stage to dementia. We hypothesize that metabolic alterations present at the level of the brain could be reflected at a systemic level in blood serum of patients, and that these alterations could be used as prognostic biomarkers. METHODS This pilot study proposes a serum investigation via nuclear magnetic resonance (NMR) spectroscopy in a consecutive series of AD patients including 57 patients affected by Alzheimer's disease at dementia stage (AD-dem) and 45 patients with mild cognitive impairment (MCI) due to AD (MCI-AD). As control group, we considered 31 subjects with mild cognitive impairment in whom AD and other neurodegenerative disorders were excluded (MCI). A panel of 26 metabolites and 112 lipoprotein-related parameters was quantified and the logistic LASSO regression algorithm was employed to identify the optimal combination of metabolites-lipoproteins and their ratios to discriminate the groups of interest. RESULTS In the training set, our model classified AD-dem and MCI with an accuracy of 81.7%. These results were reproduced in the validation set (accuracy 75.0%). Evolution of MCI-AD patients was evaluated over time. Patients who displayed a decrease in MMSE < 1.5 point per year were considered at lower progression rate: we obtained a division in 18 MCI-AD at lower progression rate (MCI-AD LR) and 27 at higher progression rate (MCI-AD HR). The model calculated using 4 metabolic features identified MCI-AD LR and MCI-AD HR with an accuracy of 73.3%. CONCLUSIONS The identification of potential novel peripheral biomarkers of Alzheimer's disease, as proposed in this study, opens a new prospect for an innovative and minimally invasive method to identify AD in its very early stages. We proposed a novel approach able to sub-stratify MCI-AD patients identifying those associated with a faster rate of clinical progression.
Collapse
Affiliation(s)
- Alessia Vignoli
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy.
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy.
| | - Giovanni Bellomo
- Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy.
| | - Federico Paolini Paoletti
- Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy
| | | | - Leonardo Tenori
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy
| | - Lucilla Parnetti
- Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy
| |
Collapse
|
3
|
Vignoli A, Gori AM, Berteotti M, Cesari F, Giusti B, Bertelli A, Kura A, Sticchi E, Salvadori E, Barbato C, Formelli B, Pescini F, Marcucci R, Tenori L, Poggesi A. The serum metabolomic profiles of atrial fibrillation patients treated with direct oral anticoagulants or vitamin K antagonists. Life Sci 2024; 351:122796. [PMID: 38852797 DOI: 10.1016/j.lfs.2024.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS Long-term oral anticoagulation is the primary therapy for preventing ischemic stroke in patients with atrial fibrillation (AF). Different types of oral anticoagulant drugs can have specific effects on the metabolism of patients. Here we characterize, for the first time, the serum metabolomic and lipoproteomic profiles of AF patients treated with anticoagulants: vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs). MATERIALS AND METHODS Serum samples of 167 AF patients (median age 78 years, 62 % males, 70 % on DOACs treatment) were analyzed via high resolution 1H nuclear magnetic resonance (NMR) spectroscopy. Data on 25 metabolites and 112 lipoprotein-related fractions were quantified and analyzed with multivariate and univariate statistical approaches. KEY FINDINGS Our data provide evidence that patients treated with VKAs and DOACs present significant differences in their profiles: lower levels of alanine and lactate (odds ratio: 1.72 and 1.84), free cholesterol VLDL-4 subfraction (OR: 1.75), triglycerides LDL-1 subfraction (OR: 1.80) and 4 IDL cholesterol fractions (ORs ∼ 1.80), as well as higher levels of HDL cholesterol (OR: 0.48), apolipoprotein A1 (OR: 0.42) and 7 HDL cholesterol fractions/subfractions (ORs: 0.40-0.51) are characteristic of serum profile of patients on DOACs' therapy. SIGNIFICANCE Our results support the usefulness of NMR-based metabolomics for the description of the effects of oral anticoagulants on AF patient circulating metabolites and lipoproteins. The higher serum levels of HDL cholesterol observed in patients on DOACs could contribute to explaining their reduced cardiovascular risk, suggesting the need of further studies in this direction to fully understand possible clinical implications.
Collapse
Affiliation(s)
- Alessia Vignoli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Maria Gori
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Martina Berteotti
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Francesca Cesari
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Betti Giusti
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Alessia Bertelli
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Ada Kura
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Elena Sticchi
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Emilia Salvadori
- NEUROFARBA Department, University of Florence, 50139 Florence, Italy
| | - Carmen Barbato
- NEUROFARBA Department, University of Florence, 50139 Florence, Italy
| | | | | | - Rossella Marcucci
- Atherothrombotic Center, Department of Experimental and Clinical Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy
| | - Leonardo Tenori
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy.
| | - Anna Poggesi
- NEUROFARBA Department, University of Florence, 50139 Florence, Italy; Stroke Unit, AOU Careggi, 50134, Florence, Italy.
| |
Collapse
|
4
|
Mustafina M, Silantyev A, Krasovskiy S, Chernyak A, Naumenko Z, Suvorov A, Gognieva D, Abdullaev M, Bektimirova A, Bykova A, Dergacheva V, Betelin V, Kopylov P. Exhaled breath analysis in adult patients with cystic fibrosis by real-time proton mass spectrometry. Clin Chim Acta 2024; 560:119733. [PMID: 38777246 DOI: 10.1016/j.cca.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Proton-transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a promising tool for a rapid online determination of exhaled volatile organic compounds (eVOCs) profiles in patients with cystic fibrosis (CF). OBJECTIVE To detect VOC breath signatures specific to adult patients with CF compared with controls using PTR-TOF-MS. METHODS 102 CF patients (54 M/48, mean age 25.6 ± 7.8 yrs) and 97 healthy controls (56 M/41F, mean age 25.8 ± 6.0 yrs) were examined. Samples from normal quiet breathing and forced expiratory maneuvers were analyzed with PTR-TOF-MS (Ionicon, Austria) to obtain VOC profiles listed as ions at various mass-to-charge ratios (m/z). RESULTS PTR-TOF-MS analysis was able to detect 167 features in exhaled breath from CF patients and healthy controls. According to cluster analysis and LASSO regression, patients with CF and controls were separated. The most significant VOCs for CF were indole, phenol, dimethyl sulfide, and not indicated: m/z = 297.0720 ([C12H13N2O7 and C17H13O5]H + ), m/z = 281.0534 ([C19H7NO2, C12H11NO7 and C16H9O5]H + ) during five-fold cross-validation both in forced expiratory maneuver and in normal quiet breathing. CONCLUSION PTR-TOF-MS is a promising method for determining the molecular composition of exhaled air specific to CF.
Collapse
Affiliation(s)
- Malika Mustafina
- Department of Cardiology, Functional and Ultrasound Diagnostics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Pulmonology Research Institute Under Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia; Research Institute for Systemic Analysis of the Russian Academy of Sciences, 117218 Moscow, Russia.
| | - Artemiy Silantyev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Stanislav Krasovskiy
- Pulmonology Research Institute Under Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alexander Chernyak
- Pulmonology Research Institute Under Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Zhanna Naumenko
- Pulmonology Research Institute Under Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Aleksandr Suvorov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Daria Gognieva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Research Institute for Systemic Analysis of the Russian Academy of Sciences, 117218 Moscow, Russia
| | - Magomed Abdullaev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Research Institute for Systemic Analysis of the Russian Academy of Sciences, 117218 Moscow, Russia
| | - Alina Bektimirova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Aleksandra Bykova
- Department of Cardiology, Functional and Ultrasound Diagnostics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Research Institute for Systemic Analysis of the Russian Academy of Sciences, 117218 Moscow, Russia
| | - Vasilisa Dergacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Betelin
- Research Institute for Systemic Analysis of the Russian Academy of Sciences, 117218 Moscow, Russia
| | - Philipp Kopylov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Research Institute for Systemic Analysis of the Russian Academy of Sciences, 117218 Moscow, Russia
| |
Collapse
|
5
|
Vignoli A, Tenori L. NMR-based metabolomics in Alzheimer's disease research: a review. Front Mol Biosci 2023; 10:1308500. [PMID: 38099198 PMCID: PMC10720579 DOI: 10.3389/fmolb.2023.1308500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the most common cause of dementia in the elderly population worldwide. Currently, there is no cure for AD, and the continuous increase in the number of susceptible individuals poses one of the most significant emerging threats to public health. However, the molecular pathways involved in the onset and progression of AD are not fully understood. This information is crucial for developing less invasive diagnostic instruments and discovering novel potential therapeutic targets. Metabolomics studies the complete ensemble of endogenous and exogenous metabolites present in biological specimens and may provide an interesting approach to identify alterations in multiple biochemical processes associated with AD onset and evolution. In this mini review, we summarize the results from metabolomic studies conducted using nuclear magnetic resonance (NMR) spectroscopy on human biological samples (blood derivatives, cerebrospinal fluid, urine, saliva, and tissues) from AD patients. We describe the metabolic alterations identified in AD patients compared to controls and to patients diagnosed with mild cognitive impairment (MCI). Moreover, we discuss the challenges and issues associated with the application of NMR-based metabolomics in the context of AD research.
Collapse
Affiliation(s)
- Alessia Vignoli
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Ghini V, Meoni G, Vignoli A, Di Cesare F, Tenori L, Turano P, Luchinat C. Fingerprinting and profiling in metabolomics of biosamples. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:105-135. [PMID: 38065666 DOI: 10.1016/j.pnmrs.2023.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.
Collapse
Affiliation(s)
- Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
8
|
Vignoli A, Meoni G, Ghini V, Di Cesare F, Tenori L, Luchinat C, Turano P. NMR-Based Metabolomics to Evaluate Individual Response to Treatments. Handb Exp Pharmacol 2023; 277:209-245. [PMID: 36318327 DOI: 10.1007/164_2022_618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Systematic Review of NMR-Based Metabolomics Practices in Human Disease Research. Metabolites 2022; 12:metabo12100963. [PMID: 36295865 PMCID: PMC9609461 DOI: 10.3390/metabo12100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the principal analytical techniques for metabolomics. It has the advantages of minimal sample preparation and high reproducibility, making it an ideal technique for generating large amounts of metabolomics data for biobanks and large-scale studies. Metabolomics is a popular “omics” technology and has established itself as a comprehensive exploratory biomarker tool; however, it has yet to reach its collaborative potential in data collation due to the lack of standardisation of the metabolomics workflow seen across small-scale studies. This systematic review compiles the different NMR metabolomics methods used for serum, plasma, and urine studies, from sample collection to data analysis, that were most popularly employed over a two-year period in 2019 and 2020. It also outlines how these methods influence the raw data and the downstream interpretations, and the importance of reporting for reproducibility and result validation. This review can act as a valuable summary of NMR metabolomic workflows that are actively used in human biofluid research and will help guide the workflow choice for future research.
Collapse
|
10
|
Li X, Du J, Chen J, Lin F, Wang W, Wei TT, Xu J, Lu QB. Metabolic profile of exhaled breath condensate from the pneumonia patients. Exp Lung Res 2022; 48:149-157. [PMID: 35708062 DOI: 10.1080/01902148.2022.2078019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE OF THE STUDY Exhaled breath condensate (EBC) is increasingly being used for disease diagnosis and environmental exposure assessment as a noninvasive method reducing the risk of exposure. The purpose of this study was to investigate the application of a new sample type of EBC in pneumonia by metabolomics and to explore differential metabolites and potential metabolic pathways. MATERIALS AND METHODS A case-control study was performed at the Peking University Third Hospital from August to December 2020. C-MS/MS analyses were performed on EBC samples using a UHPLC system. RESULTS Totally 22 patients with pneumonia and 24 healthy controls were recruited. Using untargeted metabolomics based on LC-MS/MS analysis, 25 kinds of differential metabolites were found. Through a comprehensive analysis of the pathways in which the differential metabolites were located, the key pathway with the highest correlation with the difference of metabolites was taurine and hypotaurine metabolism. CONCLUSIONS The study implicates that the hypotaurine/taurine metabolic pathway may play a role on the development of pneumonia through metabolism analysis on EBC and the 3-Sulfinoalanine may be used as a biomarker in the diagnosis of pneumonia.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research, Peking University, Beijing, People's Republic of China
| | - Jing Chen
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fei Lin
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wei Wang
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ting-Ting Wei
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research, Peking University, Beijing, People's Republic of China
| | - Jie Xu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research, Peking University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Research Progress of NMR in Natural Product Quantification. Molecules 2021; 26:molecules26206308. [PMID: 34684890 PMCID: PMC8541192 DOI: 10.3390/molecules26206308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
In the fields of medicine and health, traditional high-performance liquid chromatography or UV-visible spectrophotometry is generally used for substance quantification. However, over time, nuclear magnetic resonance spectroscopy (NMR) has gradually become more mature. Nuclear magnetic resonance spectroscopy has certain advantages in the quantitative analysis of substances, such as being nondestructive, having a high flux and short analysis time. Nuclear magnetic resonance spectroscopy has been included in the pharmacopoeiae of various countries. In this paper, the principle of nuclear magnetic resonance spectroscopy and the recent progress in the quantitative study of natural products by NMR are reviewed, and its application in the quantitative study of natural products is proposed. At the same time, the problems of using NMR alone to quantify natural products are summarized and corresponding suggestions are put forward.
Collapse
|
12
|
Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects of occupational exposure to nanoparticles (NPs) were studied by NMR metabolomics. Exhaled breath condensate (EBC) and blood plasma samples were obtained from a research nanoparticles-processing unit at a national research university. The samples were taken from three groups of subjects: samples from workers exposed to nanoparticles collected before and after shift, and from controls not exposed to NPs. Altogether, 60 1H NMR spectra of exhaled breath condensate (EBC) samples and 60 1H NMR spectra of blood plasma samples were analysed, 20 in each group. The metabolites identified together with binning data were subjected to multivariate statistical analysis, which provided clear discrimination of the groups studied. Statistically significant metabolites responsible for group separation served as a foundation for analysis of impaired metabolic pathways. It was found that the acute effect of NPs exposure is mainly reflected in the pathways related to the production of antioxidants and other protective species, while the chronic effect is manifested mainly in the alteration of glutamine and glutamate metabolism, and the purine metabolism pathway.
Collapse
|
13
|
Balder Y, Vignoli A, Tenori L, Luchinat C, Saccenti E. Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy Subjects through Integrated Univariate, Multivariate, and Network Analysis Reveals Association of Lipase Activity and Cholesterol Esterification with Sex and Age. Metabolites 2021; 11:metabo11050326. [PMID: 34070169 PMCID: PMC8158518 DOI: 10.3390/metabo11050326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, we investigated blood lipoprotein and lipid fraction profiles, quantified using nuclear magnetic resonance, in a cohort of 844 healthy blood donors, integrating standard univariate and multivariate analysis with predictive modeling and network analysis. We observed a strong association of lipoprotein and lipid main fraction profiles with sex and age. Our results suggest an age-dependent remodulation of lipase lipoprotein activity in men and a change in the mechanisms controlling the ratio between esterified and non-esterified cholesterol in both men and women.
Collapse
Affiliation(s)
- Yasmijn Balder
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.); (C.L.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.); (C.L.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.); (C.L.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
14
|
Gillenwater LA, Kechris KJ, Pratte KA, Reisdorph N, Petrache I, Labaki WW, O’Neal W, Krishnan JA, Ortega VE, DeMeo DL, Bowler RP. Metabolomic Profiling Reveals Sex Specific Associations with Chronic Obstructive Pulmonary Disease and Emphysema. Metabolites 2021; 11:161. [PMID: 33799786 PMCID: PMC7999201 DOI: 10.3390/metabo11030161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Susceptibility and progression of lung disease, as well as response to treatment, often differ by sex, yet the metabolic mechanisms driving these sex-specific differences are still poorly understood. Women with chronic obstructive pulmonary disease (COPD) have less emphysema and more small airway disease on average than men, though these differences become less pronounced with more severe airflow limitation. While small studies of targeted metabolites have identified compounds differing by sex and COPD status, the sex-specific effect of COPD on systemic metabolism has yet to be interrogated. Significant sex differences were observed in 9 of the 11 modules identified in COPDGene. Sex-specific associations by COPD status and emphysema were observed in 3 modules for each phenotype. Sex stratified individual metabolite associations with COPD demonstrated male-specific associations in sphingomyelins and female-specific associations in acyl carnitines and phosphatidylethanolamines. There was high preservation of module assignments in SPIROMICS (SubPopulations and InteRmediate Outcome Measures In COPD Study) and similar female-specific shift in acyl carnitines. Several COPD associated metabolites differed by sex. Acyl carnitines and sphingomyelins demonstrate sex-specific abundances and may represent important metabolic signatures of sex differences in COPD. Accurately characterizing the sex-specific molecular differences in COPD is vital for personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katherine A. Pratte
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA; (K.A.P.); (I.P.); (R.P.B.)
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Irina Petrache
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA; (K.A.P.); (I.P.); (R.P.B.)
- School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Wanda O’Neal
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jerry A. Krishnan
- Breathe Chicago Center, University of Illinois at Chicago, Chicago, IL 60608, USA;
| | - Victor E. Ortega
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Russell P. Bowler
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA; (K.A.P.); (I.P.); (R.P.B.)
- School of Medicine, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Vignoli A, Tenori L, Luchinat C, Saccenti E. Differential Network Analysis Reveals Molecular Determinants Associated with Blood Pressure and Heart Rate in Healthy Subjects. J Proteome Res 2020; 20:1040-1051. [PMID: 33274633 PMCID: PMC7786375 DOI: 10.1021/acs.jproteome.0c00882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
There
is mounting evidence that subclinical
nonpathological high blood pressure and heart rate during youth and
adulthood steadily increase the risk of developing a cardiovascular
disease at a later stage. For this reason, it is important to understand
the mechanisms underlying the subclinical elevation of blood pressure
and heart rate in healthy, relatively young individuals. In the present
study, we present a network-based metabolomic study of blood plasma
metabolites and lipids measured using nuclear magnetic resonance spectroscopy
on 841 adult healthy blood donor volunteers, which were stratified
for subclinical low and high blood pressure (systolic and diastolic)
and heart rate. Our results indicate a rewiring of metabolic pathways
active in high and low groups, indicating that the subjects with subclinical
high blood pressure and heart rate could present latent cardiometabolic
dysregulations.
Collapse
Affiliation(s)
- Alessia Vignoli
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
16
|
NMR Profiling of Exhaled Breath Condensate Defines Different Metabolic Phenotypes of Non-Cystic Fibrosis Bronchiectasis. Int J Mol Sci 2020; 21:ijms21228600. [PMID: 33202684 PMCID: PMC7698311 DOI: 10.3390/ijms21228600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear-magnetic-resonance (NMR) profiling of exhaled breath condensate (EBC) provides insights into the pathophysiology of bronchiectasis by identifying specific biomarkers. We evaluated whether NMR-based metabolomics discriminates the EBC-derived metabolic phenotypes (“metabotypes”) of 41 patients with non-cystic fibrosis (nCF) bronchiectasis of various etiology [24 subjects with Primary Ciliary Dyskinesia (PCD); 17 patients with bronchiectasis not associated with PCD (nCF/nPCD)], who were compared to 17 healthy subjects (HS). NMR was used for EBC profiling, and Orthogonal Projections to Latent Structures with partial least-squares discriminant analysis (OPLS-DA) was used as a classifier. The results were validated by using the EBC from 17 PCD patients not included in the primary analysis. Different statistical models were built, which compared nCF/nPCD and HS, PCD and HS, all classes (nCF/nPCD-PCD-HS), and, finally, PCD and nCF/nPCD. In the PCD-nCF/nPCD model, four statistically significant metabolites were able to discriminate between the two groups, with only a minor reduction of the quality parameters. In particular, for nCF/nPCD, acetone/acetoin and methanol increased by 21% and 18%, respectively. In PCD patients, ethanol and lactate increased by 25% and 28%, respectively. They are all related to lung inflammation as methanol is found in the exhaled breath of lung cancer patients, acetone/acetoin produce toxic ROS that damage lung tissue in CF, and lactate is observed in acute inflammation. Interestingly, a high concentration of ethanol hampers cilia beating and can be associated with the genetic defect of PCD. Model validation with 17 PCD samples not included in the primary analysis correctly predicted all samples. Our results indicate that NMR of EBC discriminates nCF/nPCD and PCD bronchiectasis patients from HS, and patients with nCF/nPCD from those with PCD. The metabolites responsible for between-group separation identified specific metabotypes, which characterize bronchiectasis of a different etiology.
Collapse
|