1
|
Gu H, Qian S, Zhang Y, Zhang M, Chen Q, Zhang X. The small molecule drug CBL0137 interferes with DNA damage repair and enhances the sensitivity of NK/T-Cell lymphoma to cisplatin. Cancer Biol Ther 2025; 26:2511301. [PMID: 40419449 DOI: 10.1080/15384047.2025.2511301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/28/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
This study aimed to investigate the in vitro and in vivo antitumor effects and mechanisms of the small molecule anticancer drug CBL0137 in NK/T-cell lymphoma (NKTCL), as well as its efficacy when combined with chemotherapy or immunotherapy. Cell viability assays were performed to evaluate the inhibitory effect of CBL0137 on NKTCL cell proliferation in vitro. Flow cytometry was used to assess the effects of the drug on apoptosis and cell cycle progression. RNA sequencing (RNA-seq) was employed to explore the mechanism of action of CBL0137 in NKTCL, and Western blotting (WB) was used to validate the expression of related proteins. An in vivo xenograft model was used to confirm the antitumor activity of CBL0137. Additionally, immunohistochemistry analysis was conducted to further study tumor tissue. CBL0137 effectively inhibited the proliferation of NKTCL cells in vitro, induced apoptosis, and significantly blocked cell cycle progression. RNA-seq analysis revealed that CBL0137 exerts its antitumor effect primarily by interfering with DNA damage repair. In vivo experiments using xenografted mice confirmed the antitumor activity of CBL0137. CBL0137, when combined with PD-1 antibody, exhibits synergistic antitumor effects in mice, and its combination with cisplatin significantly enhances the sensitivity of NKTCL to cisplatin. CBL0137 inhibits DNA damage repair in NK/T-cell lymphoma and enhances its sensitivity to cisplatin.
Collapse
Affiliation(s)
- Hang Gu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjiang Chen
- Office of General Affairs, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Fu S, Guo Y, Peng Z, Zhang D, Chang Z, Xiao Y, Zhang Q, Yu L, Chen C, Chen Y, Zhao Y. Progression and perspectives in disease modeling for Juvenile myelomonocytic leukemia. Med Oncol 2024; 42:25. [PMID: 39652257 PMCID: PMC11628578 DOI: 10.1007/s12032-024-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/26/2024] [Indexed: 12/12/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm occurring in infants and young children. JMML has been shown to be resistant to all conventional cytotoxic chemotherapy drugs, and current curative therapies still rely on hematopoietic stem cell transplantation, which carries a high risk of relapse post-transplantation. This underscores the urgent need for novel treatment strategies. However, the rarity of JMML poses a major limitation for research, as it is difficult to collect substantial primary research material. To gain a deeper insight into the underlying biological mechanisms of JMML, researchers are continuously improving and developing preclinical research models to better emulate the disease. Therefore, this review aims to delineate the various experimental models currently employed in JMML, including patient-derived cell-based models, cell models, and animal models. We will discuss the characterization of these models in the context of JMML, hoping to provide a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Shengyuan Fu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
3
|
Zhao B, Lv Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 2023; 49:283-307. [PMID: 37004697 PMCID: PMC10397176 DOI: 10.1007/s10867-023-09633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications. Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province, 430200, People's Republic of China.
| |
Collapse
|
4
|
Pearson S, Blance R, Yan F, Hsieh YC, Geary B, Amaral FMR, Somervaille TCP, Kirschner K, Whetton AD, Pierce A. Identification of curaxin as a potential new therapeutic for JAK2 V617F mutant patients. PLoS One 2023; 18:e0286412. [PMID: 37253035 PMCID: PMC10228771 DOI: 10.1371/journal.pone.0286412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Myelofibrosis is a myeloproliferative neoplasm (MPN) which typically results in reduced length and quality of life due to systemic symptoms and blood count changes arising from fibrotic changes in the bone marrow. While the JAK2 inhibitor ruxolitinib provides some clinical benefit, there remains a substantial unmet need for novel targeted therapies to better modify the disease process or eradicate the cells at the heart of myelofibrosis pathology. Repurposing drugs bypasses many of the hurdles present in drug development, such as toxicity and pharmacodynamic profiling. To this end we undertook a re-analysis of our pre-existing proteomic data sets to identify perturbed biochemical pathways and their associated drugs/inhibitors to potentially target the cells driving myelofibrosis. This approach identified CBL0137 as a candidate for targeting Jak2 mutation-driven malignancies. CBL0137 is a drug derived from curaxin targeting the Facilitates Chromatin Transcription (FACT) complex. It is reported to trap the FACT complex on chromatin thereby activating p53 and inhibiting NF-kB activity. We therefore assessed the activity of CBL0137 in primary patient samples and murine models of Jak2-mutated MPN and found it preferentially targets CD34+ stem and progenitor cells from myelofibrosis patients by comparison with healthy control cells. Further we investigate its mechanism of action in primary haemopoietic progenitor cells and demonstrate its ability to reduce splenomegaly and reticulocyte number in a transgenic murine model of myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rognvald Blance
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fei Yan
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Ya-Ching Hsieh
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Bethany Geary
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, United Kingdom
| | - Fabio M. R. Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Tim C. P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Anthony D. Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
6
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Pearson S, Whetton AD, Pierce A. Combination of curaxin and tyrosine kinase inhibitors display enhanced killing of primitive Chronic Myeloid Leukaemia cells. PLoS One 2022; 17:e0266298. [PMID: 35358275 PMCID: PMC8970494 DOI: 10.1371/journal.pone.0266298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the big increase in precision medicine targeted therapies developing curative treatments for many cancers is still a major challenge due mainly to the development of drug resistance in cancer stem cells. The cancer stem cells are constantly evolving to survive and targeted drug treatment often increases the selective pressure on these cells from which the disease develops. Chronic myeloid leukaemia is a paradigm of cancer stem cell research. Targeted therapies to the causative oncogene, BCR/ABL, have been developed but drug resistance remains a problem. The introduction of tyrosine kinase inhibitors targeting BCR/ABL were transformative in the management of CML. However, patients are rarely cured as the tyrosine kinase inhibitors fail to eradicate the leukaemic stem cell which often leads to loss of response to therapy as drug resistance develops and progression to more fatal forms of acute leukaemia occurs. New treatment strategies targeting other entities within the leukemic stem cell either alone or in combination with tyrosine kinase are therefore required. Drawing on our previous published work on the development of potential novel targets in CML and other myeloproliferative diseases along with analysis of the facilitates chromatin transcription (FACT) complex in CML we hypothesised that curaxin, a drug that targets the FACT complex and is in clinical trial for the treatment of other cancers, could be of use in the treatment of CML. We therefore assessed the curaxin CBL0137 as a new agent to extinguish CML primitive cells and show its ability to preferentially target CML cells compared to healthy control cells, especially in combination with clinically relevant tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Withington, Manchester, United Kingdom
| | - Anthony D. Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Withington, Manchester, United Kingdom
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Withington, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Bertuccio SN, Leardini D, Messelodi D, Anselmi L, Manente F, Ragni F, Serravalle S, Masetti R, Pession A. Are Induced Pluripotent Stem Cells a Step towards Modeling Pediatric Leukemias? Cells 2022; 11:cells11030476. [PMID: 35159287 PMCID: PMC8833985 DOI: 10.3390/cells11030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Despite enormous improvements in pre-clinical and clinical research, acute leukemia still represents an open challenge for pediatric hematologists; both for a significant relapse rate and for long term therapy-related sequelae. In this context, the use of an innovative technology, such as induced pluripotent stem cells (iPSCs), allows to finely reproduce the primary features of the malignancy and can be exploited as a model to study the onset and development of leukemia in vitro. The aim of this review is to explore the recent literature describing iPSCs as a key tool to study different types of hematological malignancies, comprising acute myeloid leukemia, non-down syndrome acute megakaryoblastic leukemia, B cell acute lymphoblastic leukemia, and juvenile myelomonocytic leukemia. This model demonstrates a positive impact on pediatric hematological diseases, especially in those affecting infants whose onsets is found in fetal hematopoiesis. This evidence highlights the importance of achieving an in vitro representation of the human embryonic hematopoietic development and timing-specific modifications, either genetic or epigenetic. Moreover, further insights into clonal evolution studies shed light in the way of a new precision medicine era, where patient-oriented decisions and therapies could further improve the outcome of pediatric cases. Nonetheless, we will also discuss here the difficulties and limitations of this model.
Collapse
Affiliation(s)
- Salvatore Nicola Bertuccio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
| | - Davide Leardini
- Specialty School of Pediatrics, University of Bologna, 40138 Bologna, Italy;
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daria Messelodi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
- Correspondence: (D.M.); (L.A.)
| | - Laura Anselmi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
- Correspondence: (D.M.); (L.A.)
| | - Francesca Manente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
| | - Federico Ragni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
| | - Salvatore Serravalle
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Pession
- Division of Pediatrics, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
10
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|