1
|
Jecmen T, Tuzhilkin R, Sulc M. Photo-Methionine, Azidohomoalanine and Homopropargylglycine Are Incorporated into Newly Synthesized Proteins at Different Rates and Differentially Affect the Growth and Protein Expression Levels of Auxotrophic and Prototrophic E. coli in Minimal Medium. Int J Mol Sci 2023; 24:11779. [PMID: 37511538 PMCID: PMC10380393 DOI: 10.3390/ijms241411779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Residue-specific incorporation of non-canonical amino acids (ncAAs) introduces bio-orthogonal functionalities into proteins. As such, this technique is applied in protein characterization and quantification. Here, we studied protein expression with three methionine analogs, namely photo-methionine (pMet), azidohomoalanine (Aha) and homopropargylglycine (Hpg), in prototrophic E. coli BL-21 and auxotrophic E. coli B834 to maximize ncAA content, thereby assessing the effect of ncAAs on bacterial growth and the expression of cytochrome b5 (b5M46), green fluorescence protein (MBP-GFP) and phage shock protein A. In auxotrophic E. coli, ncAA incorporation ranged from 50 to 70% for pMet and reached approximately 50% for Aha, after 26 h expression, with medium and low expression levels of MBP-GFP and b5M46, respectively. In the prototrophic strain, by contrast, the protein expression levels were higher, albeit with a sharp decrease in the ncAA content after the first hours of expression. Similar expression levels and 70-80% incorporation rates were achieved in both bacterial strains with Hpg. Our findings provide guidance for expressing proteins with a high content of ncAAs, highlight pitfalls in determining the levels of methionine replacement by ncAAs by MALDI-TOF mass spectrometry and indicate a possible systematic bias in metabolic labeling techniques using Aha or Hpg.
Collapse
Affiliation(s)
- Tomas Jecmen
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic
| | - Roman Tuzhilkin
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic
| | - Miroslav Sulc
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic
| |
Collapse
|
2
|
Williams RB, Alam Afsar MN, Tikunova S, Kou Y, Fang X, Somarathne RP, Gyawu RF, Knotts GM, Agee TA, Garcia SA, Losordo LD, Fitzkee NC, Kekenes-Huskey PM, Davis JP, Johnson CN. Human disease-associated calmodulin mutations alter calcineurin function through multiple mechanisms. Cell Calcium 2023; 113:102752. [PMID: 37245392 PMCID: PMC10330910 DOI: 10.1016/j.ceca.2023.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Calmodulin (CaM) is a ubiquitous, calcium-sensing protein that regulates a multitude of processes throughout the body. In response to changes in [Ca2+], CaM modifies, activates, and deactivates enzymes and ion channels, as well as many other cellular processes. The importance of CaM is highlighted by the conservation of an identical amino acid sequence in all mammals. Alterations to CaM amino acid sequence were once thought to be incompatible with life. During the last decade modifications to the CaM protein sequence have been observed in patients suffering from life-threatening heart disease (calmodulinopathy). Thus far, inadequate or untimely interaction between mutant CaM and several proteins (LTCC, RyR2, and CaMKII) have been identified as mechanisms underlying calmodulinopathy. Given the extensive number of CaM interactions in the body, there are likely many consequences for altering CaM protein sequence. Here, we demonstrate that disease-associated CaM mutations alter the sensitivity and activity of the Ca2+-CaM-enhanced serine/threonine phosphatase calcineurin (CaN). Biophysical characterization by circular dichroism, solution NMR spectroscopy, stopped-flow kinetic measurements, and MD simulations provide mechanistic insight into mutation dysfunction as well as highlight important aspects of CaM Ca2+ signal transduction. We find that individual CaM point mutations (N53I, F89L, D129G, and F141L) impair CaN function, however, the mechanisms are not the same. Specifically, individual point mutations can influence or modify the following properties: CaM binding, Ca2+ binding, and/or Ca2+kinetics. Moreover, structural aspects of the CaNCaM complex can be altered in manners that indicate changes to allosteric transmission of CaM binding to the enzyme active site. Given that loss of CaN function can be fatal, as well as evidence that CaN modifies ion channels already associated with calmodulinopathy, our results raise the possibility that altered CaN function contributes to calmodulinopathy.
Collapse
Affiliation(s)
- Ryan B Williams
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Md Nure Alam Afsar
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A
| | - Yongjun Kou
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A
| | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood Illinois 60153, U.S.A
| | - Radha P Somarathne
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Rita F Gyawu
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Garrett M Knotts
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Taylor A Agee
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Sara A Garcia
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Luke D Losordo
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood Illinois 60153, U.S.A
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A.
| | - Christopher N Johnson
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A; Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville TN 37232, U.S.A.
| |
Collapse
|
3
|
Giles J, Lopez V, McConnaha E, Hayden M, Kragenbring C, Carli D, Wauson E, Tran QK. Regulation of basal autophagy by calmodulin availability. FEBS J 2022; 289:5322-5340. [PMID: 35285161 DOI: 10.1111/febs.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 01/18/2023]
Abstract
Macroautophagy (hereafter autophagy) is a process that degrades cellular components to maintain homeostasis. The Ca2+ sensor calmodulin (CaM) regulates numerous cell functions but is a limiting factor due to its insufficient availability for all target proteins. However, evidence that CaM availability regulates basal autophagy is lacking. Here, we have tested this hypothesis. CaM antagonists W-7, trifluoperazine and CGS9343b cause autophagosome accumulation and inhibit basal autophagic flux in the same manner as does chloroquine. These reagents promote the activity of AMP-activated protein kinase (AMPK) but not that of the mechanistic target of rapamycin (mTOR). Competitive binding assays using CaM sensors with different Ca2+ dependencies showed that chloroquine directly binds CaM in a Ca2+ -dependent fashion. The CaM antagonists have disparate effects on cytoplasmic Ca2+ , triggering from none to robust signals, indicating that their consistent inhibition of autophagy is due to inhibition of CaM and not Ca2+ . Chelating intracellular Ca2+ reduces the effect of the CaM antagonists to accumulate LC3-II, indicating that they do so by inhibiting CaM-dependent activities at basal Ca2+ level. The CaM antagonists cause lysosomal alkalinisation. Consistently, buffering CaM with a high-affinity CaM-binding protein that binds CaM at resting Ca2+ level increases lysosomal pH. Enhanced CaM buffering using a chimeric protein that contains two high-affinity CaM-binding sites that can collectively bind CaM at a large range of Ca2+ further increases lysosomal pH and increases LC3-II accumulation and AMPK activity, but not that of mTOR. These data demonstrate that CaM availability is required for basal autophagy.
Collapse
Affiliation(s)
- Jennifer Giles
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Vanessa Lopez
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Elizabeth McConnaha
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Matthew Hayden
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Caleb Kragenbring
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - David Carli
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Eric Wauson
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| |
Collapse
|
4
|
Jaiswal S, He Y, Lu HP. Probing functional conformation-state fluctuation dynamics in recognition binding between calmodulin and target peptide. J Chem Phys 2022; 156:055102. [DOI: 10.1063/5.0074277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Yufan He
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| |
Collapse
|
5
|
Kaster K, Patton J, Clayton S, Wauson E, Giles J, Tran QK. A novel assay to assess the effects of estrogen on the cardiac calmodulin binding equilibrium. Life Sci 2022; 290:120247. [PMID: 34954214 PMCID: PMC8779721 DOI: 10.1016/j.lfs.2021.120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
AIMS The Ca2+-binding protein calmodulin (CaM) modulates numerous target proteins but is produced insufficiently to bind all of them, generating a limiting CaM equilibrium. Menopause increases cardiac morbidity; however, it is unknown if the cardiac CaM equilibrium is affected by estrogen. We devised an assay to assess the effects of ovariectomy and estrogen treatment on the cardiac CaM equilibrium. MATERIALS AND METHODS Sprague-Dawley rats received sham surgery or ovariectomy, followed by 2-week treatment with vehicle or 17β-estradiol. Ca2+-saturated left ventricular (LV) lysates were processed through CaM sepharose columns, which retained CaM-binding proteins unoccupied by endogenous CaM. Eluants therefrom were subjected to a competitive binding assay against purified CaM and a CaM biosensor to assess the amounts of unoccupied CaM-binding sites. LV cellular composition was assessed by immunohistochemistry. KEY FINDINGS LV eluants processed from sham animals reduce biosensor response by ~32%, indicating baseline presence of unoccupied CaM-binding sites and a limiting CaM equilibrium. Ovariectomy exacerbates the limiting CaM equilibrium, reducing biosensor response by ~65%. 17β-estradiol treatment equalizes the difference between sham and ovariectomized animals. These changes reflect whole tissue responses and are not mirrored by changes in total surface areas of cardiomyocytes and fibroblasts. Consistently, Ca2+-dependent, but not Ca2+-independent, interaction between CaM and the cardiac inositol trisphosphate receptor (IP3R) is reduced following ovariectomy and is restored by subsequent 17β-estradiol treatment. SIGNIFICANCE Our assay provides a new parameter to assess tissue CaM equilibrium. The exacerbated limiting CaM equilibrium following estrogen loss may contribute to cardiac morbidity and is prevented by estrogen treatment.
Collapse
Affiliation(s)
- Kyle Kaster
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, IA 50312, United States
| | - John Patton
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, IA 50312, United States
| | - Sarah Clayton
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, IA 50312, United States
| | - Eric Wauson
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, IA 50312, United States.
| |
Collapse
|
6
|
Samarasinghe TN, Zeng Y, Johnson CK. Microchip Electrophoresis Assay for Calmodulin Binding Proteins. J Sep Sci 2021; 44:895-902. [PMID: 34321981 DOI: 10.1002/jssc.202000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The calcium signaling protein calmodulin regulates numerous intracellular processes. We introduce a sensitive microchip assay to separate and detect calmodulin binding proteins. The assay utilizes an optimized microchip electrophoresis protein separation platform with laser-induced fluorescence detection. Fluorescence-labeled calmodulin modified with a photoreactive diazirine crosslinker allowed selective detection of calmodulin binding proteins. We demonstrate successful in-vitro crosslinking of calmodulin with two calmodulin binding proteins, calcineurin and nitric oxide synthase. We compare the efficacy of commonly applied electrophoretic separation modes: microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography/gel electrophoresis, and nanoparticle colloidal arrays. Out of the methods tested, polydymethylsiloxane/glass chips with microchip zone electrophoresis gave the poorest separation, whereas sieving methods in which electro-osmotic flow was suppressed gave the best separation of photoproducts of calmodulin conjugated with calmodulin binding proteins.
Collapse
Affiliation(s)
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Persechini A, Armbruster H, Keightley A. Investigating the landscape of intracellular [Ca 2+] in live cells by rapid photoactivated cross-linking of calmodulin-protein interactions. Cell Calcium 2021; 98:102450. [PMID: 34375924 DOI: 10.1016/j.ceca.2021.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
The Ca2+ sensor protein calmodulin interacts in a Ca2+-dependent manner with a large number of proteins that among them encompass a diverse assortment of functions and subcellular localizations. A method for monitoring calmodulin-protein interactions as they occur throughout a living cell would thus uniquely enable investigations of the intracellular landscape of [Ca2+] and its relationship to cell function. We have developed such a method based on capture of calmodulin-protein interactions by rapid photoactivated cross-linking (t1/2 ∼7s) in cells stably expressing a tandem affinity tagged calmodulin that have been metabolically labeled with a photoreactive methionine analog. Tagged adducts are stringently enriched, and captured calmodulin interactors are then identified and quantified based on tandem mass spectrometry data for their tryptic peptides. In this paper we show that the capture behaviors of interactors in cells are consistent with the presence of basal microdomains of elevated [Ca2+]. Ca2+ sensitivities for capture were determined, and these suggest that [Ca2+] levels are above ∼1 μM in these regions. Although the microdomains appear to affect capture of most proteins, capture of some is at an apparent Ca2+-dependent maximum, suggesting they are targeted to the domains. Removal of extracellular Ca2+ has both immediate (5 min) and delayed (30 min) effects on capture, implying that the microdomains are supported by a combination of Ca2+ influx across the cell membrane and Ca2+ derived from internal stores. The known properties of the presumptive microdomain targeted proteins suggestroles in a variety of Ca2+-dependent basal metabolism and in formation and maintenance of the domains.
Collapse
Affiliation(s)
- Anthony Persechini
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA.
| | - Hailey Armbruster
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Andrew Keightley
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| |
Collapse
|
8
|
Kim WD, Yap SQ, Huber RJ. A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. Int J Mol Sci 2021; 22:ijms22041722. [PMID: 33572113 PMCID: PMC7915506 DOI: 10.3390/ijms22041722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Shyong Q. Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Correspondence: ; Tel.: +1-705-748-1011 (ext. 7316)
| |
Collapse
|
9
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
10
|
Goehring A, Michin I, Gerdes T, Schulze N, Blueggel M, Rehic E, Kaschani F, Kaiser M, Bayer P. Targeting of parvulin interactors by diazirine mediated cross-linking discloses a cellular role of human Par14/17 in actin polymerization. Biol Chem 2020; 401:955-968. [PMID: 32142471 DOI: 10.1515/hsz-2019-0423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 11/15/2022]
Abstract
The peptidyl-prolyl cis/trans isomerases (PPIases) Parvulin 14 (Par14) and Parvulin 17 (Par17) result from alternative transcription initiation of the PIN4 gene. Whereas Par14 is present in all metazoan, Par17 is only expressed in Hominidae. Par14 resides mainly within the cellular nucleus, while Par17 is translocated into mitochondria. Using photo-affinity labeling, cross-linking and mass spectrometry (MS) we identified binding partners for both enzymes from HeLa lysates and disentangled their cellular roles. Par14 is involved in biogenesis of ribonucleoprotein (RNP)-complexes, RNA processing and DNA repair. Its elongated isoform Par17 participates in protein transport/translocation and in cytoskeleton organization. Nuclear magnetic resonance (NMR) spectroscopy reveals that Par17 binds to β-actin with its N-terminal region, while both parvulins initiate actin polymerization depending on their PPIase activity as monitored by fluorescence spectroscopy. The knockdown (KD) of Par17 in HCT116 cells results in a defect in cell motility and migration.
Collapse
Affiliation(s)
- Anna Goehring
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Irina Michin
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Tina Gerdes
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Mike Blueggel
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Edisa Rehic
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 2-5, D-45117 Essen, Germany
| |
Collapse
|