1
|
Zhang Q, Zeng R, Tang J, Jiang X, Zhu C. The "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with Bletilla striata polysaccharides and composite polysaccharides. Int J Biol Macromol 2024; 262:130018. [PMID: 38331057 DOI: 10.1016/j.ijbiomac.2024.130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Liu F, Li R, Zhong Y, Liu X, Deng W, Huang X, Price M, Li J. Age-related alterations in metabolome and microbiome provide insights in dietary transition in giant pandas. mSystems 2023; 8:e0025223. [PMID: 37273228 PMCID: PMC10308887 DOI: 10.1128/msystems.00252-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/06/2023] Open
Abstract
We conducted UPLC-MS-based metabolomics, 16S rRNA, and metagenome sequencing on the fecal samples of 44 captive giant pandas (Ailuropoda melanoleuca) from four age groups (i.e., Cub, Young, Adult, and Old) to comprehensively understand age-related changes in the metabolism and gut microbiota of giant pandas. We characterized the metabolite profiles of giant pandas based on 1,376 identified metabolites, with 152 significantly differential metabolites (SDMs) found across the age groups. We found that the metabolites and the composition/function of the gut microbiota changed in response to the transition from a milk-dominant diet in panda cubs to a bamboo-specific diet in young and adult pandas. Lipid metabolites such as choline and hippuric acid were enriched in the Cub group, and many plant secondary metabolites were significantly higher in the Young and Adult groups, while oxidative stress and inflammatory related metabolites were only found in the Old group. However, there was a decrease in the α-diversity of gut microbiota in adult and old pandas, who exclusively consume bamboo. The abundance of bacteria related to the digestion of cellulose-rich food, such as Firmicutes, Streptococcus, and Clostridium, significantly increased from the Cub to the Adult group, while the abundance of beneficial bacteria such as Faecalibacterium, Sarcina, and Blautia significantly decreased. Notably, several potential pathogenic bacteria had relatively high abundances, especially in the Young group. Metagenomic analysis identified 277 CAZyme genes including cellulose degrading genes, and seven of the CAZymes had abundances that significantly differed between age groups. We also identified 237 antibiotic resistance genes (ARGs) whose number and diversity increased with age. We also found a significant positive correlation between the abundance of bile acids and gut bacteria, especially Lactobacillus and Bifidobacterium. Our results from metabolome, 16S rRNA, and metagenome data highlight the important role of the gut microbiota-bile acid axis in the regulation of age-related metabolism and provide new insights into the lipid metabolism of giant pandas. IMPORTANCE The giant panda is a member of the order Carnivora but is entirely herbivorous. The giant panda's specialized diet and related metabolic mechanisms have not been fully understood. It is therefore crucial to investigate the dynamic changes in metabolites as giant pandas grow and physiologically adapt to their herbivorous diet. This study conducted UPLC-MS-based metabolomics 16S rRNA, and metagenome sequencing on the fecal samples of captive giant pandas from four age groups. We found that metabolites and the composition/function of gut microbiota changed in response to the transition from a milk-dominant diet in cubs to a bamboo-specific diet in young and adult pandas. The metabolome, 16S rRNA, and metagenome results highlight that the gut microbiota-bile acid axis has an important role in the regulation of age-related metabolism, and our study provides new insights into the lipid metabolism of giant pandas.
Collapse
Affiliation(s)
- Fangyuan Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Rengui Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Yi Zhong
- China Wildlife Conservation Association, Beijing, China
| | - Xu Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Xiaoyu Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Fiore E, Lisuzzo A, Laghi L, Harvatine KJ, Mazzotta E, Alterisio MC, Ciaramella P, Zhu C, Contiero B, Faillace V, Guccione J. Serum metabolomics assessment of etiological processes predisposing ketosis in water buffalo during early lactation. J Dairy Sci 2023; 106:3465-3476. [PMID: 36935234 DOI: 10.3168/jds.2022-22209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/23/2022] [Indexed: 03/19/2023]
Abstract
Metabolic disorders as ketosis are manifestations of the animal's inability to manage the increase in energy requirement during early lactation. Generally, buffaloes show a different response to higher metabolic demands than other ruminants with a lower incidence of metabolic problems, although ketosis is one of the major diseases that may decrease the productivity in buffaloes. The aim of this study was to characterize the metabolic profile of Mediterranean buffaloes (MB) associated with 2 different levels of β-hydroxybutyrate (BHB). Sixty-two MB within 50 days in milk (DIM) were enrolled and divided into 2 groups according to serum BHB concentration: healthy group (37 MB; BHB <0.70 mmol/L; body condition score: 5.00; parity: 3.78; and DIM: 30.70) and group at risk of hyperketonemia (25 MB; BHB ≥0.70 mmol/L; body condition score: 4.50; parity: 3.76; and DIM: 33.20). The statistical analysis was conducted by one-way ANOVA and unpaired 2-sample Wilcoxon tests. Fifty-seven metabolites were identified and among them, 12 were significant or tended to be significant. These metabolites were related to different metabolic changes such as mobilization of body resources, ruminal fermentations, urea cycle, thyroid hormone synthesis, inflammation, and oxidative stress status. These findings are suggestive of metabolic changes related to subclinical ketosis status that should be further investigated to better characterize this disease in the MB.
Collapse
Affiliation(s)
- E Fiore
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - A Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - L Laghi
- Department of Agro-Food Science and Technology, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, State College 16801
| | - E Mazzotta
- Istituto Zooprofilattico delle Venezie, Viale dell'Università 10, Legnaro 35020, Italy
| | - M C Alterisio
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy.
| | - P Ciaramella
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy
| | - C Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041 Sichuan, China
| | - B Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - V Faillace
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - J Guccione
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy
| |
Collapse
|
4
|
Zhu C, Zhang Q, Zhao X, Yang Z, Yang F, Yang Y, Tang J, Laghi L. Metabolomic Analysis of Multiple Biological Specimens (Feces, Serum, and Urine) by 1H-NMR Spectroscopy from Dairy Cows with Clinical Mastitis. Animals (Basel) 2023; 13:ani13040741. [PMID: 36830529 PMCID: PMC9952568 DOI: 10.3390/ani13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Due to huge economic losses to the dairy industry worldwide, mastitis can be considered as one of the most common diseases in dairy cows. This work aimed to study this disease by comparing multiple biological specimens (feces, serum, and urine) from individuals with or without clinical mastitis. This was performed by a single analytical platform, namely 1H-NMR, through a multi-matrix strategy. Thanks to the high reproducibility of 1H-NMR, we could characterize 120 molecules across dairy cow feces, serum, and urine. Among them, 23 molecules were in common across the three biofluids. By integrating the results of multi-matrix metabolomics, several pathways pertaining to energy metabolism and amino acid metabolism appeared to be affected by clinical mastitis. The present work wished to deepen the understanding of dairy cow mastitis in its clinical form. Simultaneous analysis of metabolome changes across several key biofluids could facilitate knowledge discovery and the reliable identification of potential biomarkers, which could be, in turn, used to shed light on the early diagnosis of dairy cow mastitis in its subclinical form.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yang Yang
- Farming and Animal Husbandry Bureau of Ganzi County, Ganzi 626700, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
5
|
Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia. Sci Rep 2022; 12:16463. [PMID: 36183000 PMCID: PMC9526738 DOI: 10.1038/s41598-022-20371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ketosis is one of the most important health problems in dairy sheep. The aim of this study was to evaluate the metabolic alterations in hyperketonemic (HYK) ewes. Forty-six adult Sardinian ewes were enrolled between 7 ± 3 days post-partum. Blood samples were collected from the jugular vein using Venosafe tubes containing clot activator from jugular vein after clinical examination. The concentration of β-hydroxybutyrate (BHB) was determined in serum and used to divide ewes into assign ewes into: Non-HYK (serum BHB < 0.80 mmol/L) and HYK (serum BHB ≥ 0.80 mmol/L) groups. Animal data and biochemical parameters of groups were examined with one-way ANOVA, and metabolite differences were tested using a t-test. A robust principal component analysis model and a heatmap were used to highlight common trends among metabolites. Over-representation analysis was performed to investigate metabolic pathways potentially altered in connection with BHB alterations. The metabolomic analysis identified 54 metabolites with 14 different between groups. These metabolites indicate altered ruminal microbial populations and fermentations; an interruption of the tricarboxylic acid cycle; initial lack of glucogenic substrates; mobilization of body reserves; the potential alteration of electron transport chain; influence on urea synthesis; alteration of nervous system, inflammatory response, and immune cell function.
Collapse
|
6
|
Zhu C, Yang Z, He L, Lu X, Tang J, Laghi L. The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods 2022; 11:foods11192986. [PMID: 36230062 PMCID: PMC9563412 DOI: 10.3390/foods11192986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
As an essential beverage beneficial for Tibetan people, Ya’an Tibetan tea has received scarce attention, particularly from the point of view of the characterization of its metabolome. The aim of the study is to systematically characterize the metabolome of Tibetan tea by means of untargeted 1H-NMR. Moreover, the variations of its metabolome along ageing time are evaluated by taking advantage of univariate and multivariate analyses. A total of 45 molecules are unambiguously identified and quantified, comprising amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and catechins. The concentrations of amino acids, organic acids, carbohydrates and catechins are mainly determined by ageing time. The present study would serve as a reference guide for further work on the Ya’an Tibetan tea metabolome, therefore contributing to the related industries.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
7
|
Adaptation of gut microbiome and host metabolic systems to lignocellulosic degradation in bamboo rats. THE ISME JOURNAL 2022; 16:1980-1992. [PMID: 35568757 PMCID: PMC9107070 DOI: 10.1038/s41396-022-01247-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in response to the low-nutrient bamboo diet.
Collapse
|
8
|
Zhu C, Jin L, Luo B, Zhou Q, Dong L, Li X, Zhang H, Huang Y, Li C, Zou L, Laghi L. Dominant Components of the Giant Panda Seminal Plasma Metabolome, Characterized by 1H-NMR Spectroscopy. Animals (Basel) 2022; 12:ani12121536. [PMID: 35739871 PMCID: PMC9219455 DOI: 10.3390/ani12121536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary As China’s flagship animal, the giant panda (Ailuropoda melanoleuca) attracts much attention due to its small population and low natural reproductive rate. Therefore, artificial insemination has become the leading practical approach in the captive breeding programs of giant pandas worldwide. Seminal plasma acts as a medium between spermatozoa and the external stimuli, and its characteristics have been directly linked to fertility in both artificial insemination and natural fertilization. The current work, for the first time, attempts to characterize, by proton magnetic resonance spectroscopy (1H-NMR), the metabolome of healthy giant panda seminal plasma. A total of 35 molecules were quantified, with distinct age-related trends highlighted by a multivariate analysis, and the concentrations of 2,3-butanediol were significantly different between individuals younger than 8 years and older than 13 years. In addition, isopropanol’s concentration was significantly linked to estrus stages. Besides, the variations in the metabolome’s profile with storage time were also evaluated. This study may serve as a reference for research wishing to shed light on the biological mechanisms affecting giant panda sperm’s overall quality and may ultimately lead to novel approaches to giant panda artificial insemination. Abstract As an assisted breeding technique, artificial insemination has become the main effective practical approach in the captive breeding programs of giant panda worldwide. The composition of seminal plasma plays an important role in the success of breeding. The present work is the first attempt to characterize, by proton magnetic resonance spectroscopy (1H-NMR), the metabolome of healthy giant panda seminal plasma. A total of 35 molecules were quantified, with the concentration of 2,3-butanediol being significantly different between individuals younger than 8 years and older than 13 years, and other distinct age-related trends were highlighted by a multivariate analysis. Isopropanol’s concentration was significantly linked to estrus stages. Besides, the variations in the metabolome’s profile during storage were also evaluated. This study may serve as a reference for further research wishing to shed light on the biological mechanisms affecting giant panda sperm’s overall quality and may ultimately lead to novel approaches to giant panda artificial insemination.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Bo Luo
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Qiang Zhou
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Li Dong
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Xiaoyan Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (B.L.); (Q.Z.); (L.D.); (X.L.); (H.Z.); (Y.H.)
- Correspondence: (C.L.); (L.Z.); Tel.: +86-0835-2318208 (C.L.); +86-028-86290986 (L.Z.)
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (C.L.); (L.Z.); Tel.: +86-0835-2318208 (C.L.); +86-028-86290986 (L.Z.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| |
Collapse
|
9
|
Lignocellulose Fermentation Products Generated by Giant Panda Gut Microbiomes Depend Ultimately on pH Rather than Portion of Bamboo: A Preliminary Study. Microorganisms 2022; 10:microorganisms10050978. [PMID: 35630422 PMCID: PMC9146640 DOI: 10.3390/microorganisms10050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Giant pandas feed almost exclusively on bamboo but miss lignocellulose-degrading genes. Their gut microbiome may contribute to their nutrition; however, the limited access to pandas makes experimentation difficult. In vitro incubation of dung samples is used to infer gut microbiome activity. In pandas, such tests indicated that green leaves are largely fermented to ethanol at neutral pH and yellow pith to lactate at acidic pH. Pandas may feed on either green leaves or yellow pith within the same day, and it is unclear how pH, dung sample, fermentation products and supplied bamboo relate to one another. Additionally, the gut microbiome contribution to solid bamboo digestion must be appropriately assessed. Here, gut microbiomes derived from dung samples with mixed colors were used to ferment green leaves, also by artificially adjusting the initial pH. Gut microbiomes digestion of solid lignocellulose accounted for 30–40% of the detected final fermentation products. At pH 6.5, mixed-color dung samples had the same fermentation profile as green dung samples (mainly alcohols), while adjusting the initial pH to 4.5 resulted in the profile of yellow dung samples (mainly lactate). Metaproteomics confirmed that gut microbiomes attacked hemicellulose, and that the panda’s alpha amylase was the predominant enzyme (up to 75%).
Collapse
|
10
|
Zhu C, Tang K, Lu X, Tang J, Laghi L. An Untargeted Metabolomics Investigation of Milk from Dairy Cows with Clinical Mastitis by 1H-NMR. Foods 2021; 10:foods10081707. [PMID: 34441485 PMCID: PMC8394248 DOI: 10.3390/foods10081707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the diseases with the highest incidence in dairy cows, causing huge economic losses to the dairy industry all over the world. The aim of the study was to characterize mastitic milk metabolome through untargeted nuclear magnetic resonance spectroscopy (1H-NMR). Taking advantage of the high reproducibility of 1H-NMR, we had the opportunity to provide quantitative information for all the metabolites identified. Fifty-four molecules were characterized, sorted mainly into the chemical groups, namely amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and analogues. Combined with serum metabolomic investigations, several pathways were addressed to explain the mechanisms of milk metabolome variation affected by clinical mastitis, such as tricarboxylic acid cycle (TCA cycle) and phenylalanine, tyrosine and tryptophan biosynthesis. These results provide a further understanding of milk metabolome altered by clinical mastitis, which can be used as a reference for the further milk metabolome investigations.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Kaiwei Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
- Correspondence: ; Tel.: +86-028-8592-8243
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 47521 Cesena, Italy;
| |
Collapse
|
11
|
Brugaletta G, Luise D, De Cesare A, Zampiga M, Laghi L, Trevisi P, Manfreda G, Sirri F. Insights into the mode of action of tannin-based feed additives in broiler chickens: looking for connections with the plasma metabolome and caecal microbiota. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1842813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Giorgio Brugaletta
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Diana Luise
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Marco Zampiga
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Laghi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Gerardo Manfreda
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Federico Sirri
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites 2020; 10:metabo10040157. [PMID: 32316507 PMCID: PMC7240958 DOI: 10.3390/metabo10040157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
The urine from 35 giraffes was studied by untargeted 1H-NMR, with the purpose of obtaining, for the first time, a fingerprint of its metabolome. The metabolome, as downstream of the transcriptome and proteome, has been considered as the most representative approach to monitor the relationships between animal physiological features and environment. Thirty-nine molecules were unambiguously quantified, able to give information about diet, proteins digestion, energy generation, and gut-microbial co-metabolism. The samples collected allowed study of the effects of age and sex on the giraffe urinary metabolome. In addition, preliminary information about how sampling procedure and pregnancy could affect a giraffe’s urinary metabolome was obtained. Such work could trigger the setting up of methods to non-invasively study the health status of giraffes, which is utterly needed, considering that anesthetic-related complications make their immobilization a very risky practice.
Collapse
|