1
|
Rajczewski AT, Blakeley-Ruiz JA, Meyer A, Vintila S, McIlvin MR, Van Den Bossche T, Searle BC, Griffin TJ, Saito MA, Kleiner M, Jagtap PD. Data-Independent Acquisition Mass Spectrometry as a Tool for Metaproteomics: Interlaboratory Comparison Using a Model Microbiome. Proteomics 2025; 25:e202400187. [PMID: 40211604 DOI: 10.1002/pmic.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
Mass spectrometry (MS)-based metaproteomics is used to identify and quantify proteins in microbiome samples, with the frequently used methodology being data-dependent acquisition mass spectrometry (DDA-MS). However, DDA-MS is limited in its ability to reproducibly identify and quantify lower abundant peptides and proteins. To address DDA-MS deficiencies, proteomics researchers have started using Data-independent acquisition mass spectrometry (DIA-MS) for reproducible detection and quantification of peptides and proteins. We sought to evaluate the reproducibility and accuracy of DIA-MS metaproteomic measurements relative to DDA-MS using a mock community of known taxonomic composition. Artificial microbial communities of known composition were analyzed independently in three laboratories using DDA- and DIA-MS acquisition methods. In this study, DIA-MS yielded more protein and peptide identifications than DDA-MS in each laboratory for the particular instruments and software parameters chosen. In addition, the protein and peptide identifications were more reproducible in all laboratories and provided an accurate quantification of proteins and taxonomic groups in the samples. We also identified some limitations of current DIA tools when applied to metaproteomic data, highlighting specific needs to improve DIA tools enabling analysis of metaproteomic datasets from complex microbiomes. Ultimately, DIA-MS represents a promising strategy for MS-based metaproteomics due to its large number of detected proteins and peptides, reproducibility, deep sequencing capabilities, and accurate quantitation.
Collapse
Affiliation(s)
- Andrew T Rajczewski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Annaliese Meyer
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole MA USA, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew R McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Tim Van Den Bossche
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Brian C Searle
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mak A Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Van Den Bossche T, Beslic D, van Puyenbroeck S, Suomi T, Holstein T, Martens L, Elo LL, Muth T. Metaproteomics Beyond Databases: Addressing the Challenges and Potentials of De Novo Sequencing. Proteomics 2025:e202400321. [PMID: 39888246 DOI: 10.1002/pmic.202400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Metaproteomics enables the large-scale characterization of microbial community proteins, offering crucial insights into their taxonomic composition, functional activities, and interactions within their environments. By directly analyzing proteins, metaproteomics offers insights into community phenotypes and the roles individual members play in diverse ecosystems. Although database-dependent search engines are commonly used for peptide identification, they rely on pre-existing protein databases, which can be limiting for complex, poorly characterized microbiomes. De novo sequencing presents a promising alternative, which derives peptide sequences directly from mass spectra without requiring a database. Over time, this approach has evolved from manual annotation to advanced graph-based, tag-based, and deep learning-based methods, significantly improving the accuracy of peptide identification. This Viewpoint explores the evolution, advantages, limitations, and future opportunities of de novo sequencing in metaproteomics. We highlight recent technological advancements that have improved its potential for detecting unsequenced species and for providing deeper functional insights into microbial communities.
Collapse
Affiliation(s)
- Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Denis Beslic
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Berlin, Germany
| | - Sam van Puyenbroeck
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tanja Holstein
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Data Competence Center MF 2, Robert Koch Institute, Berlin, Germany
| | - Lennart Martens
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Thilo Muth
- Data Competence Center MF 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
3
|
Rajczewski AT, Blakeley-Ruiz. JA, Meyer A, Vintila S, McIlvin MR, Van Den Bossche T, Searle BC, Griffin TJ, Saito MA, Kleiner M, Jagtap PD. Data-Independent Acquisition Mass Spectrometry as a Tool for Metaproteomics: Interlaboratory Comparison Using a Model Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.18.613707. [PMID: 39345414 PMCID: PMC11430069 DOI: 10.1101/2024.09.18.613707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mass spectrometry (MS)-based metaproteomics is used to identify and quantify proteins in microbiome samples, with the frequently used methodology being Data-Dependent Acquisition mass spectrometry (DDA-MS). However, DDA-MS is limited in its ability to reproducibly identify and quantify lower abundant peptides and proteins. To address DDA-MS deficiencies, proteomics researchers have started using Data-Independent Acquisition Mass Spectrometry (DIA-MS) for reproducible detection and quantification of peptides and proteins. We sought to evaluate the reproducibility and accuracy of DIA-MS metaproteomic measurements relative to DDA-MS using a mock community of known taxonomic composition. Artificial microbial communities of known composition were analyzed independently in three laboratories using DDA- and DIA-MS acquisition methods. DIA-MS yielded more protein and peptide identifications than DDA-MS in each laboratory. In addition, the protein and peptide identifications were more reproducible in all laboratories and provided an accurate quantification of proteins and taxonomic groups in the samples. We also identified some limitations of current DIA tools when applied to metaproteomic data, highlighting specific needs to improve DIA tools enabling analysis of metaproteomic datasets from complex microbiomes. Ultimately, DIA-MS represents a promising strategy for MS-based metaproteomics due to its large number of detected proteins and peptides, reproducibility, deep sequencing capabilities, and accurate quantitation.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis MN USA
| | | | - Annaliese Meyer
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole MA USA, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA USA
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC USA
| | - Matthew R. McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole MA USA
| | - Tim Van Den Bossche
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent Belgium
| | - Brian C. Searle
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis MN USA
| | - Mak A. Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole MA USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis MN USA
| |
Collapse
|
4
|
Marzano V, Levi Mortera S, Putignani L. Insights on Wet and Dry Workflows for Human Gut Metaproteomics. Proteomics 2024:e202400242. [PMID: 39740098 DOI: 10.1002/pmic.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The human gut microbiota (GM) is a community of microorganisms that resides in the gastrointestinal (GI) tract. Recognized as a critical element of human health, the functions of the GM extend beyond GI well-being to influence overall systemic health and susceptibility to disease. Among the other omic sciences, metaproteomics highlights additional facets that make it a highly valuable discipline in the study of GM. Indeed, it allows the protein inventory of complex microbial communities. Proteins with associated taxonomic membership and function are identified and quantified from their constituent peptides by liquid chromatography coupled to mass spectrometry analyses and by querying specific databases (DBs). The aim of this review was to compile comprehensive information on metaproteomic studies of the human GM, with a focus on the bacterial component, to assist newcomers in understanding the methods and types of research conducted in this field. The review outlines key steps in a metaproteomic-based study, such as protein extraction, DB selection, and bioinformatic workflow. The importance of standardization is emphasized. In addition, a list of previously published studies is provided as hints for researchers interested in investigating the role of GM in health and disease states.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Choudhary RK, Kumar B. V. S, Sekhar Mukhopadhyay C, Kashyap N, Sharma V, Singh N, Salajegheh Tazerji S, Kalantari R, Hajipour P, Singh Malik Y. Animal Wellness: The Power of Multiomics and Integrative Strategies: Multiomics in Improving Animal Health. Vet Med Int 2024; 2024:4125118. [PMID: 39484643 PMCID: PMC11527549 DOI: 10.1155/2024/4125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.
Collapse
Affiliation(s)
- Ratan Kumar Choudhary
- Department of Bioinformatics, Animal Stem Cells Laboratory, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sunil Kumar B. V.
- Department of Animal Biotechnology, Proteomics & Metabolomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Chandra Sekhar Mukhopadhyay
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Neeraj Kashyap
- Department of Bioinformatics, Genomics Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Vishal Sharma
- Department of Animal Biotechnology, Reproductive Biotechnology Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Nisha Singh
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Sina Salajegheh Tazerji
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roozbeh Kalantari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouneh Hajipour
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yashpal Singh Malik
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
6
|
Sun Y, Xing Z, Liang S, Miao Z, Zhuo LB, Jiang W, Zhao H, Gao H, Xie Y, Zhou Y, Yue L, Cai X, Chen YM, Zheng JS, Guo T. metaExpertPro: A Computational Workflow for Metaproteomics Spectral Library Construction and Data-Independent Acquisition Mass Spectrometry Data Analysis. Mol Cell Proteomics 2024; 23:100840. [PMID: 39278598 PMCID: PMC11795700 DOI: 10.1016/j.mcpro.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Analysis of large-scale data-independent acquisition mass spectrometry metaproteomics data remains a computational challenge. Here, we present a computational pipeline called metaExpertPro for metaproteomics data analysis. This pipeline encompasses spectral library generation using data-dependent acquisition MS, protein identification and quantification using data-independent acquisition mass spectrometry, functional and taxonomic annotation, as well as quantitative matrix generation for both microbiota and hosts. By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both Orbitrap and timsTOF MS instruments. To evaluate the depth and accuracy of identification and quantification, we conducted extensive assessments using human fecal samples and benchmark tests. Performance tests conducted on human fecal samples indicated that metaExpertPro quantified an average of 45,000 peptides in a 60-min diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained a low factual false discovery rate of approximately 5% for protein groups across four benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively high accuracy (F-score = 0.67-0.90) in genus diversity and showed a high correlation (rSpearman = 0.73-0.82) between the measured and true genus relative abundance in benchmark tests. Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high reproducibility and consistency across the commonly adopted public human gut microbial protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients, metaExpertPro revealed characteristic alterations in microbial functions and potential interactions between the microbiota and the host.
Collapse
Affiliation(s)
- Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ziyuan Xing
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Hui Zhao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Yue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Tanca A, Deledda MA, De Diego L, Abbondio M, Uzzau S. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics. mSystems 2024; 9:e0066124. [PMID: 38934547 PMCID: PMC11265449 DOI: 10.1128/msystems.00661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The application of fecal metaproteomics to large-scale studies of the gut microbiota requires high-throughput analysis and standardized experimental protocols. Although high-throughput protein cleanup and digestion methods are increasingly used in shotgun proteomics, no studies have yet critically compared such protocols using human fecal samples. In this study, human fecal protein extracts were processed using several different protocols based on three main approaches: filter-aided sample preparation (FASP), solid-phase-enhanced sample preparation (SP3), and suspension trapping (S-Trap). These protocols were applied in both low-throughput (i.e., microtube-based) and high-throughput (i.e., microplate-based) formats, and the final peptide mixtures were analyzed by liquid chromatography coupled to high-resolution tandem mass spectrometry. The FASP-based methods and the combination of SP3 with in-StageTips (iST) yielded the best results in terms of the number of peptides identified through a database search against gut microbiome and human sequences. The efficiency of protein digestion, the ability to preserve hydrophobic peptides and high molecular weight proteins, and the reproducibility of the methods were also evaluated for the different protocols. Other relevant variables, including interindividual variability of stool, duration of protocols, and total costs, were considered and discussed. In conclusion, the data presented here can significantly contribute to the optimization and standardization of sample preparation protocols in human fecal metaproteomics. Furthermore, the promising results obtained with the high-throughput methods are expected to encourage the development of automated workflows and their application to large-scale gut microbiome studies.IMPORTANCEFecal metaproteomics is an experimental approach that allows the investigation of gut microbial functions, which are involved in many different physiological and pathological processes. Standardization and automation of sample preparation protocols in fecal metaproteomics are essential for its application in large-scale studies. Here, we comparatively evaluated different methods, available also in a high-throughput format, enabling two key steps of the metaproteomics analytical workflow (namely, protein cleanup and digestion). The results of our study provide critical information that may be useful for the optimization of metaproteomics experimental pipelines and their implementation in laboratory automation systems.
Collapse
Affiliation(s)
- Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | | | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| |
Collapse
|
8
|
Wu E, Xu G, Xie D, Qiao L. Data-independent acquisition in metaproteomics. Expert Rev Proteomics 2024; 21:271-280. [PMID: 39152734 DOI: 10.1080/14789450.2024.2394190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Metaproteomics offers insights into the function of complex microbial communities, while it is also capable of revealing microbe-microbe and host-microbe interactions. Data-independent acquisition (DIA) mass spectrometry is an emerging technology, which holds great potential to achieve deep and accurate metaproteomics with higher reproducibility yet still facing a series of challenges due to the inherent complexity of metaproteomics and DIA data. AREAS COVERED This review offers an overview of the DIA metaproteomics approaches, covering aspects such as database construction, search strategy, and data analysis tools. Several cases of current DIA metaproteomics studies are presented to illustrate the procedures. Important ongoing challenges are also highlighted. Future perspectives of DIA methods for metaproteomics analysis are further discussed. Cited references are searched through and collected from Google Scholar and PubMed. EXPERT OPINION Considering the inherent complexity of DIA metaproteomics data, data analysis strategies specifically designed for interpretation are imperative. From this point of view, we anticipate that deep learning methods and de novo sequencing methods will become more prevalent in the future, potentially improving protein coverage in metaproteomics. Moreover, the advancement of metaproteomics also depends on the development of sample preparation methods, data analysis strategies, etc. These factors are key to unlocking the full potential of metaproteomics.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Guanyang Xu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Do K, Mehta S, Wagner R, Bhuming D, Rajczewski AT, Skubitz APN, Johnson JE, Griffin TJ, Jagtap PD. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. mSphere 2024; 9:e0079323. [PMID: 38780289 PMCID: PMC11332332 DOI: 10.1128/msphere.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification, and prioritization of microbial proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant [to generate peptide-spectral matches (PSMs) and quantification], PepQuery2 (to verify the quality of PSMs), Unipept (for taxonomic and functional annotation), and MSstatsTMT (for statistical analysis). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies. IMPORTANCE Clinical metaproteomics has immense potential to offer functional insights into the microbiome and its contributions to human disease. However, there are numerous challenges in the metaproteomic analysis of clinical samples, including handling of very large protein sequence databases for sensitive and accurate peptide and protein identification from mass spectrometry data, as well as taxonomic and functional annotation of quantified peptides and proteins to enable interpretation of results. To address these challenges, we have developed a novel clinical metaproteomics workflow that provides customized bioinformatic identification, verification, quantification, and taxonomic and functional annotation. This bioinformatic workflow is implemented in the Galaxy ecosystem and has been used to characterize diverse clinical sample types, such as nasopharyngeal swabs and bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness and availability for use by the research community via analysis of residual fluid from cervical swabs.
Collapse
Affiliation(s)
- Katherine Do
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reid Wagner
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dechen Bhuming
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew T. Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy P. N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Sun Z, Ning Z, Figeys D. The Landscape and Perspectives of the Human Gut Metaproteomics. Mol Cell Proteomics 2024; 23:100763. [PMID: 38608842 PMCID: PMC11098955 DOI: 10.1016/j.mcpro.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The human gut microbiome is closely associated with human health and diseases. Metaproteomics has emerged as a valuable tool for studying the functionality of the gut microbiome by analyzing the entire proteins present in microbial communities. Recent advancements in liquid chromatography and tandem mass spectrometry (LC-MS/MS) techniques have expanded the detection range of metaproteomics. However, the overall coverage of the proteome in metaproteomics is still limited. While metagenomics studies have revealed substantial microbial diversity and functional potential of the human gut microbiome, few studies have summarized and studied the human gut microbiome landscape revealed with metaproteomics. In this article, we present the current landscape of human gut metaproteomics studies by re-analyzing the identification results from 15 published studies. We quantified the limited proteome coverage in metaproteomics and revealed a high proportion of annotation coverage of metaproteomics-identified proteins. We conducted a preliminary comparison between the metaproteomics view and the metagenomics view of the human gut microbiome, identifying key areas of consistency and divergence. Based on the current landscape of human gut metaproteomics, we discuss the feasibility of using metaproteomics to study functionally unknown proteins and propose a whole workflow peptide-centric analysis. Additionally, we suggest enhancing metaproteomics analysis by refining taxonomic classification and calculating confidence scores, as well as developing tools for analyzing the interaction between taxonomy and function.
Collapse
Affiliation(s)
- Zhongzhi Sun
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Dumas T, Martinez Pinna R, Lozano C, Radau S, Pible O, Grenga L, Armengaud J. The astounding exhaustiveness and speed of the Astral mass analyzer for highly complex samples is a quantum leap in the functional analysis of microbiomes. MICROBIOME 2024; 12:46. [PMID: 38454512 PMCID: PMC10918999 DOI: 10.1186/s40168-024-01766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND By analyzing the proteins which are the workhorses of biological systems, metaproteomics allows us to list the taxa present in any microbiota, monitor their relative biomass, and characterize the functioning of complex biological systems. RESULTS Here, we present a new strategy for rapidly determining the microbial community structure of a given sample and designing a customized protein sequence database to optimally exploit extensive tandem mass spectrometry data. This approach leverages the capabilities of the first generation of Quadrupole Orbitrap mass spectrometer incorporating an asymmetric track lossless (Astral) analyzer, offering rapid MS/MS scan speed and sensitivity. We took advantage of data-dependent acquisition and data-independent acquisition strategies using a peptide extract from a human fecal sample spiked with precise amounts of peptides from two reference bacteria. CONCLUSIONS Our approach, which combines both acquisition methods, proves to be time-efficient while processing extensive generic databases and massive datasets, achieving a coverage of more than 122,000 unique peptides and 38,000 protein groups within a 30-min DIA run. This marks a significant departure from current state-of-the-art metaproteomics methodologies, resulting in broader coverage of the metabolic pathways governing the biological system. In combination, our strategy and the Astral mass analyzer represent a quantum leap in the functional analysis of microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Thibaut Dumas
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | | | - Clément Lozano
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | - Sonja Radau
- Thermo Fisher Scientific GmbH, 63303, Dreieich, Germany
| | - Olivier Pible
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | - Lucia Grenga
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France.
| |
Collapse
|
12
|
Wu E, Yang Y, Zhao J, Zheng J, Wang X, Shen C, Qiao L. High-Abundance Protein-Guided Hybrid Spectral Library for Data-Independent Acquisition Metaproteomics. Anal Chem 2024; 96:1029-1037. [PMID: 38180447 DOI: 10.1021/acs.analchem.3c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Metaproteomics offers a direct avenue to identify microbial proteins in microbiota, enabling the compositional and functional characterization of microbiota. Due to the complexity and heterogeneity of microbial communities, in-depth and accurate metaproteomics faces tremendous limitations. One challenge in metaproteomics is the construction of a suitable protein sequence database to interpret the highly complex metaproteomic data, especially in the absence of metagenomic sequencing data. Herein, we present a high-abundance protein-guided hybrid spectral library strategy for in-depth data independent acquisition (DIA) metaproteomic analysis (HAPs-hyblibDIA). A dedicated high-abundance protein database of gut microbial species is constructed and used to mine the taxonomic information on microbiota samples. Then, a sample-specific protein sequence database is built based on the taxonomic information using Uniprot protein sequence for subsequent analysis of the DIA data using hybrid spectral library-based DIA analysis. We evaluated the accuracy and sensitivity of the method using synthetic microbial community samples and human gut microbiome samples. It was demonstrated that the strategy can successfully identify taxonomic compositions of microbiota samples and that the peptides identified by HAPs-hyblibDIA overlapped greatly with the peptides identified using a metagenomic sequencing-derived database. At the peptide and species level, our results can serve as a complement to the results obtained using a metagenomic sequencing-derived database. Furthermore, we validated the applicability of the HAPs-hyblibDIA strategy in a cohort of human gut microbiota samples of colorectal cancer patients and controls, highlighting its usability in biomedical research.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yi Yang
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jinzhi Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Jianxujie Zheng
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Xiaoqing Wang
- Shanghai Omicsolution Co., Ltd., Shanghai 200000, China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd., Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
13
|
Do K, Mehta S, Wagner R, Bhuming D, Rajczewski AT, Skubitz APN, Johnson JE, Griffin TJ, Jagtap PD. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568121. [PMID: 38045370 PMCID: PMC10690215 DOI: 10.1101/2023.11.21.568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, which are usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification and prioritization of microbial and host proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant (to generate peptide-spectral matches (PSMs) and quantification), PepQuery2 (to verify the quality of PSMs), and Unipept and MSstatsTMT (for taxonomy and functional annotation). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies.
Collapse
|
14
|
Gómez-Varela D, Xian F, Grundtner S, Sondermann JR, Carta G, Schmidt M. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics. Front Microbiol 2023; 14:1258703. [PMID: 37908546 PMCID: PMC10613666 DOI: 10.3389/fmicb.2023.1258703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Metaproteomics is a rapidly advancing field that offers unique insights into the taxonomic composition and the functional activity of microbial communities, and their effects on host physiology. Classically, data-dependent acquisition (DDA) mass spectrometry (MS) has been applied for peptide identification and quantification in metaproteomics. However, DDA-MS exhibits well-known limitations in terms of depth, sensitivity, and reproducibility. Consequently, methodological improvements are required to better characterize the protein landscape of microbiomes and their interactions with the host. Methods We present an optimized proteomic workflow that utilizes the information captured by Parallel Accumulation-Serial Fragmentation (PASEF) MS for comprehensive metaproteomic studies in complex fecal samples of mice. Results and discussion We show that implementing PASEF using a DDA acquisition scheme (DDA-PASEF) increased peptide quantification up to 5 times and reached higher accuracy and reproducibility compared to previously published classical DDA and data-independent acquisition (DIA) methods. Furthermore, we demonstrate that the combination of DIA, PASEF, and neuronal-network-based data analysis, was superior to DDA-PASEF in all mentioned parameters. Importantly, DIA-PASEF expanded the dynamic range towards low-abundant proteins and it doubled the quantification of proteins with unknown or uncharacterized functions. Compared to previous classical DDA metaproteomic studies, DIA-PASEF resulted in the quantification of up to 4 times more taxonomic units using 16 times less injected peptides and 4 times shorter chromatography gradients. Moreover, 131 additional functional pathways distributed across more and even uniquely identified taxa were profiled as revealed by a peptide-centric taxonomic-functional analysis. We tested our workflow on a validated preclinical mouse model of neuropathic pain to assess longitudinal changes in host-gut microbiome interactions associated with pain - an unexplored topic for metaproteomics. We uncovered the significant enrichment of two bacterial classes upon pain, and, in addition, the upregulation of metabolic activities previously linked to chronic pain as well as various hitherto unknown ones. Furthermore, our data revealed pain-associated dynamics of proteome complexes implicated in the crosstalk between the host immune system and the gut microbiome. In conclusion, the DIA-PASEF metaproteomic workflow presented here provides a stepping stone towards a deeper understanding of microbial ecosystems across the breadth of biomedical and biotechnological fields.
Collapse
|
15
|
Sun Z, Ning Z, Cheng K, Duan H, Wu Q, Mayne J, Figeys D. MetaPep: A core peptide database for faster human gut metaproteomics database searches. Comput Struct Biotechnol J 2023; 21:4228-4237. [PMID: 37692080 PMCID: PMC10491838 DOI: 10.1016/j.csbj.2023.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Metaproteomics has increasingly been applied to study functional changes in the human gut microbiome. Peptide identification is an important step in metaproteomics research, with sequence database search (SDS) and spectral library search (SLS) as the two main methods to identify peptides. However, the large search space in metaproteomics studies causes significant challenges for both identification methods. Moreover, with the development of mass spectrometry, it is now feasible to perform metaproteomic projects involving 100-1000 individual microbiomes. These large-scale projects create a conundrum for searching large databases. In this study, we constructed MetaPep, a core peptide database (including both collections of peptide sequences and tandem MS spectra) greatly accelerating the peptide identifications. Raw files from fifteen metaproteomics projects were re-analyzed and the identified peptide-spectrum matches (PSMs) were used to construct the MetaPep database. The constructed MetaPep database achieved rapid and accurate identification of peptides for human gut metaproteomics. MetaPep has a large collection of peptides and spectra that have been identified in published human gut metaproteomics datasets. MetaPep database can be used as an important resource in the current stage of human gut metaproteomics research. This study showed the possibility of applying a core peptide database as a generic metaproteomics workflow. MetaPep could also be an important resource for future human gut metaproteomics research, such as DIA (data-independent acquisition) analysis.
Collapse
Affiliation(s)
- Zhongzhi Sun
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kai Cheng
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Qing Wu
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
16
|
Rathore D, Marino MJ, Nita-Lazar A. Omics and systems view of innate immune pathways. Proteomics 2023; 23:e2200407. [PMID: 37269203 DOI: 10.1002/pmic.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Multiomics approaches to studying systems biology are very powerful techniques that can elucidate changes in the genomic, transcriptomic, proteomic, and metabolomic levels within a cell type in response to an infection. These approaches are valuable for understanding the mechanisms behind disease pathogenesis and how the immune system responds to being challenged. With the emergence of the COVID-19 pandemic, the importance and utility of these tools have become evident in garnering a better understanding of the systems biology within the innate and adaptive immune response and for developing treatments and preventative measures for new and emerging pathogens that pose a threat to human health. In this review, we focus on state-of-the-art omics technologies within the scope of innate immunity.
Collapse
Affiliation(s)
- Deepali Rathore
- Functional Cellular Networks Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J Marino
- Functional Cellular Networks Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Zhao J, Yang Y, Teng M, Zheng J, Wang B, Mallawaarachchi V, Lin Y, Fang Z, Shen C, Yu S, Yang F, Qiao L, Wang L. Metaproteomics profiling of the microbial communities in fermentation starters ( Daqu) during multi-round production of Chinese liquor. Front Nutr 2023; 10:1139836. [PMID: 37324728 PMCID: PMC10267310 DOI: 10.3389/fnut.2023.1139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The special flavor and fragrance of Chinese liquor are closely related to microorganisms in the fermentation starter Daqu. The changes of microbial community can affect the stability of liquor yield and quality. Methods In this study, we used data-independent acquisition mass spectrometry (DIA-MS) for cohort study of the microbial communities of a total of 42 Daqu samples in six production cycles at different times of a year. The DIA MS data were searched against a protein database constructed by metagenomic sequencing. Results The microbial composition and its changes across production cycles were revealed. Functional analysis of the differential proteins was carried out and the metabolic pathways related to the differential proteins were explored. These metabolic pathways were related to the saccharification process in liquor fermentation and the synthesis of secondary metabolites to form the unique flavor and aroma in the Chinese liquor. Discussion We expect that the metaproteome profiling of Daqu from different production cycles will serve as a guide for the control of fermentation process of Chinese liquor in the future.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Kweichow Moutai Group, Renhuai, Guizhou, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | | | | | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
- Flinders Accelerator for Microbiome Exploration, Flinders University, Bedford Park, SA, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| |
Collapse
|
18
|
Zhang N, Kandalai S, Zhou X, Hossain F, Zheng Q. Applying multi-omics toward tumor microbiome research. IMETA 2023; 2:e73. [PMID: 38868335 PMCID: PMC10989946 DOI: 10.1002/imt2.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Rather than a "short-term tenant," the tumor microbiome has been shown to play a vital role as a "permanent resident," affecting carcinogenesis, cancer development, metastasis, and cancer therapies. As the tumor microbiome has great potential to become a target for the early diagnosis and treatment of cancer, recent research on the relevance of the tumor microbiota has attracted a wide range of attention from various scientific fields, resulting in remarkable progress that benefits from the development of interdisciplinary technologies. However, there are still a great variety of challenges in this emerging area, such as the low biomass of intratumoral bacteria and unculturable character of some microbial species. Due to the complexity of tumor microbiome research (e.g., the heterogeneity of tumor microenvironment), new methods with high spatial and temporal resolution are urgently needed. Among these developing methods, multi-omics technologies (combinations of genomics, transcriptomics, proteomics, and metabolomics) are powerful approaches that can facilitate the understanding of the tumor microbiome on different levels of the central dogma. Therefore, multi-omics (especially single-cell omics) will make enormous impacts on the future studies of the interplay between microbes and tumor microenvironment. In this review, we have systematically summarized the advances in multi-omics and their existing and potential applications in tumor microbiome research, thus providing an omics toolbox for investigators to reference in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Xiaozhuang Zhou
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Farzana Hossain
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
- Department of Biological Chemistry and Pharmacology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
19
|
Zhao J, Yang Y, Xu H, Zheng J, Shen C, Chen T, Wang T, Wang B, Yi J, Zhao D, Wu E, Qin Q, Xia L, Qiao L. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota. NPJ Biofilms Microbiomes 2023; 9:4. [PMID: 36693863 PMCID: PMC9873935 DOI: 10.1038/s41522-023-00373-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Metaproteomics can provide valuable insights into the functions of human gut microbiota (GM), but is challenging due to the extreme complexity and heterogeneity of GM. Data-independent acquisition (DIA) mass spectrometry (MS) has been an emerging quantitative technique in conventional proteomics, but is still at the early stage of development in the field of metaproteomics. Herein, we applied library-free DIA (directDIA)-based metaproteomics and compared the directDIA with other MS-based quantification techniques for metaproteomics on simulated microbial communities and feces samples spiked with bacteria with known ratios, demonstrating the superior performance of directDIA by a comprehensive consideration of proteome coverage in identification as well as accuracy and precision in quantification. We characterized human GM in two cohorts of clinical fecal samples of pancreatic cancer (PC) and mild cognitive impairment (MCI). About 70,000 microbial proteins were quantified in each cohort and annotated to profile the taxonomic and functional characteristics of GM in different diseases. Our work demonstrated the utility of directDIA in quantitative metaproteomics for investigating intestinal microbiota and its related disease pathogenesis.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311200, Hangzhou, China
| | - Hua Xu
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Jianxujie Zheng
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd, 201100, Shanghai, China
| | - Tian Chen
- Changhai Hospital, The Naval Military Medical University, 200433, Shanghai, China
| | - Tao Wang
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, 201306, Shanghai, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Dan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Enhui Wu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, 200433, Shanghai, China.
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China.
| |
Collapse
|
20
|
Miura N, Okuda S. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Comput Struct Biotechnol J 2023; 21:1140-1150. [PMID: 36817962 PMCID: PMC9925844 DOI: 10.1016/j.csbj.2023.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Metaproteomics is a relatively young field that has only been studied for approximately 15 years. Nevertheless, it has the potential to play a key role in disease research by elucidating the mechanisms of communication between the human host and the microbiome. Although it has been useful in developing an understanding of various diseases, its analytical strategies remain limited to the extended application of proteomics. The sequence databases in metaproteomics must be large because of the presence of thousands of species in a typical sample, which causes problems unique to large databases. In this review, we demonstrate the usefulness of metaproteomics in disease research through examples from several studies. Additionally, we discuss the challenges of applying metaproteomics to conventional proteomics analysis methods and introduce studies that may provide clues to the solutions. We also discuss the need for a standard false discovery rate control method for metaproteomics to replace common target-decoy search approaches in proteomics and a method to ensure the reliability of peptide spectrum match.
Collapse
Affiliation(s)
- Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
21
|
Zhao J, Yang Y, Chen L, Zheng J, Lv X, Li D, Fang Z, Shen C, Mallawaarachchi V, Lin Y, Yu S, Yang F, Wang L, Qiao L. Quantitative metaproteomics reveals composition and metabolism characteristics of microbial communities in Chinese liquor fermentation starters. Front Microbiol 2023; 13:1098268. [PMID: 36699582 PMCID: PMC9868298 DOI: 10.3389/fmicb.2022.1098268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Daqu, the Chinese liquor fermentation starter, contains complex microbial communities that are important for the yield, quality, and unique flavor of produced liquor. However, the composition and metabolism of microbial communities in the different types of high-temperature Daqu (i.e., white, yellow, and black Daqu) have not been well understood. Methods Herein, we used quantitative metaproteomics based on data-independent acquisition (DIA) mass spectrometry to analyze a total of 90 samples of white, yellow, and black Daqu collected in spring, summer, and autumn, revealing the taxonomic and metabolic profiles of different types of Daqu across seasons. Results Taxonomic composition differences were explored across types of Daqu and seasons, where the under-fermented white Daqu showed the higher microbial diversity and seasonal stability. It was demonstrated that yellow Daqu had higher abundance of saccharifying enzymes for raw material degradation. In addition, considerable seasonal variation of microbial protein abundance was discovered in the over-fermented black Daqu, suggesting elevated carbohydrate and amino acid metabolism in autumn black Daqu. Discussion We expect that this study will facilitate the understanding of the key microbes and their metabolism in the traditional fermentation process of Chinese liquor production.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | | | - Jianxujie Zheng
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xibin Lv
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Dandan Li
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Armengaud J. Metaproteomics to understand how microbiota function: The crystal ball predicts a promising future. Environ Microbiol 2023; 25:115-125. [PMID: 36209500 PMCID: PMC10091800 DOI: 10.1111/1462-2920.16238] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/21/2023]
Abstract
In the medical, environmental, and biotechnological fields, microbial communities have attracted much attention due to their roles and numerous possible applications. The study of these communities is challenging due to their diversity and complexity. Innovative methods are needed to identify the taxonomic components of individual microbiota, their changes over time, and to determine how microoorganisms interact and function. Metaproteomics is based on the identification and quantification of proteins, and can potentially provide this full picture. Due to the wide molecular panorama and functional insights it provides, metaproteomics is gaining momentum in microbiome and holobiont research. Its full potential should be unleashed in the coming years with progress in speed and cost of analyses. In this exploratory crystal ball exercise, I discuss the technical and conceptual advances in metaproteomics that I expect to drive innovative research over the next few years in microbiology. I also debate the concepts of 'microbial dark matter' and 'Metaproteomics-Assembled Proteomes (MAPs)' and present some long-term prospects for metaproteomics in clinical diagnostics and personalized medicine, environmental monitoring, agriculture, and biotechnology.
Collapse
Affiliation(s)
- Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| |
Collapse
|
23
|
Hardouin P, Pible O, Marchandin H, Culotta K, Armengaud J, Chiron R, Grenga L. Quick and wide-range taxonomical repertoire establishment of the cystic fibrosis lung microbiota by tandem mass spectrometry on sputum samples. Front Microbiol 2022; 13:975883. [PMID: 36312921 PMCID: PMC9608366 DOI: 10.3389/fmicb.2022.975883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Microorganisms proteotyping by tandem mass spectrometry has been recently shown as a powerful methodology to identify the wide-range taxonomy and biomass of microbiota. Sputum is the recommended specimen for routine microbiological monitoring of Cystic Fibrosis (CF) patients but has been rarely submitted to tandem mass spectrometry-based proteotyping. In this study, we compared the microbial components of spontaneous and induced sputum samples from three cystic fibrosis patients. Although the presence of microbial proteins is much lower than host proteins, we report that the microbiota’s components present in the samples can be identified, as well as host biomarkers and functional insights into the microbiota. No significant difference was found in microorganism abundance between paired spontaneous and induced sputum samples. Microbial proteins linked to resistance, iron uptake, and biofilm-forming ability were observed in sputa independently of the sampling method. This unbiased and enlarged view of the CF microbiome could be highly complementary to culture and relevant for the clinical management of CF patients by improving knowledge about the host-pathogen dynamics and CF pathophysiology.
Collapse
Affiliation(s)
- Pauline Hardouin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
- Université de Montpellier, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Bagnols-sur-Cèze, France
| | - Olivier Pible
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU de Nîmes, Nîmes, France
| | - Karen Culotta
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Raphaël Chiron
- HydroSciences Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, Université de Montpellier, CHU de Montpellier, Montpellier, France
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
- *Correspondence: Lucia Grenga,
| |
Collapse
|
24
|
Pietilä S, Suomi T, Elo LL. Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples. ISME COMMUNICATIONS 2022; 2:51. [PMID: 37938742 PMCID: PMC9723653 DOI: 10.1038/s43705-022-00137-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Mass spectrometry-based metaproteomics is a relatively new field of research that enables the characterization of the functionality of microbiota. Recently, we demonstrated the applicability of data-independent acquisition (DIA) mass spectrometry to the analysis of complex metaproteomic samples. This allowed us to circumvent many of the drawbacks of the previously used data-dependent acquisition (DDA) mass spectrometry, mainly the limited reproducibility when analyzing samples with complex microbial composition. However, the DDA-assisted DIA approach still required additional DDA data on the samples to assist the analysis. Here, we introduce, for the first time, an untargeted DIA metaproteomics tool that does not require any DDA data, but instead generates a pseudospectral library directly from the DIA data. This reduces the amount of required mass spectrometry data to a single DIA run per sample. The new DIA-only metaproteomics approach is implemented as a new open-source software package named glaDIAtor, including a modern web-based graphical user interface to facilitate wide use of the tool by the community.
Collapse
Affiliation(s)
- Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
25
|
Shute A, Bihan DG, Lewis IA, Nasser Y. Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Front Neurosci 2022; 16:917197. [PMID: 35812241 PMCID: PMC9260117 DOI: 10.3389/fnins.2022.917197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.
Collapse
Affiliation(s)
- Adam Shute
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Suomi T, Elo LL. Statistical and machine learning methods to study human CD4+ T cell proteome profiles. Immunol Lett 2022; 245:8-17. [DOI: 10.1016/j.imlet.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
|
27
|
Simopoulos CMA, Figeys D, Lavallée-Adam M. Novel Bioinformatics Strategies Driving Dynamic Metaproteomic Studies. Methods Mol Biol 2022; 2456:319-338. [PMID: 35612752 DOI: 10.1007/978-1-0716-2124-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Constant improvements in mass spectrometry technologies and laboratory workflows have enabled the proteomics investigation of biological samples of growing complexity. Microbiomes represent such complex samples for which metaproteomics analyses are becoming increasingly popular. Metaproteomics experimental procedures create large amounts of data from which biologically relevant signal must be efficiently extracted to draw meaningful conclusions. Such a data processing requires appropriate bioinformatics tools specifically developed for, or capable of handling metaproteomics data. In this chapter, we outline current and novel tools that can perform the most commonly used steps in the analysis of cutting-edge metaproteomics data, such as peptide and protein identification and quantification, as well as data normalization, imputation, mining, and visualization. We also provide details about the experimental setups in which these tools should be used.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
28
|
Blakeley-Ruiz JA, Kleiner M. Considerations for Constructing a Protein Sequence Database for Metaproteomics. Comput Struct Biotechnol J 2022; 20:937-952. [PMID: 35242286 PMCID: PMC8861567 DOI: 10.1016/j.csbj.2022.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Mass spectrometry-based metaproteomics has emerged as a prominent technique for interrogating the functions of specific organisms in microbial communities, in addition to total community function. Identifying proteins by mass spectrometry requires matching mass spectra of fragmented peptide ions to a database of protein sequences corresponding to the proteins in the sample. This sequence database determines which protein sequences can be identified from the measurement, and as such the taxonomic and functional information that can be inferred from a metaproteomics measurement. Thus, the construction of the protein sequence database directly impacts the outcome of any metaproteomics study. Several factors, such as source of sequence information and database curation, need to be considered during database construction to maximize accurate protein identifications traceable to the species of origin. In this review, we provide an overview of existing strategies for database construction and the relevant studies that have sought to test and validate these strategies. Based on this review of the literature and our experience we provide a decision tree and best practices for choosing and implementing database construction strategies.
Collapse
Affiliation(s)
- J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Corresponding authors at: Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Corresponding authors at: Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
29
|
Discovery of lipid profiles of type 2 diabetes associated with hyperlipidemia using untargeted UPLC Q-TOF/MS-based lipidomics approach. Clin Chim Acta 2021; 520:53-62. [PMID: 34077755 DOI: 10.1016/j.cca.2021.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
The incidence of type 2 diabetes (T2D) is rising rapidly and has become an important public health problem. According to reports, people with T2D often have hyperlipidemia. Hence, in the current study, a plasma non-targeted lipidomics method was used to study the differences in lipid profile between 36 T2D-associated hyperlipidemia patients and 43 healthy controls by ultra-performance liquid chromatography coupled with quadrupole time-of-flight high-definition mass spectrometry (UPLC Q-TOF/MS). Furthermore, we studied the differences in lipid profile between 36 T2D-associated hyperlipidemia patients and 41 T2D patients. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), S-plot and heatmap were used to analyze the lipid changes between the groups. Compared with the healthy control group, 37 lipids were significantly altered in the T2D-associated hyperlipidemia group, and when compared with the T2D group, 22 lipids were significantly altered in the T2D-associated hyperlipidemia group. Of all the detected lipids categories which included sphingolipids, glycerolipids, glycerophospholipids, prenol lipids and saccharolipids, glycerophospholipids accounted for the largest proportion in the two groups. Also, this study found that glycerophospholipid metabolism pathway was the most relevant pathway for these lipid metabolisms. The identified lipids may enhance the disease prediction and provide a new tool to monitor the progression of T2D-associated hyperlipidemia.
Collapse
|
30
|
Karaduta O, Dvanajscak Z, Zybailov B. Metaproteomics-An Advantageous Option in Studies of Host-Microbiota Interaction. Microorganisms 2021; 9:microorganisms9050980. [PMID: 33946610 PMCID: PMC8147213 DOI: 10.3390/microorganisms9050980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Gut microbiome contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. Manipulating gut microbiota is being recognized as a therapeutic target to manage various chronic diseases. The therapeutic manipulation of the intestinal microbiome is achieved through diet modification, the administration of prebiotics, probiotics, or antibiotics, and more recently, fecal microbiome transplantation (FMT). In this opinion paper, we give a perspective on the current status of application of multi-omics technologies in the analysis of host-microbiota interactions. The aim of this paper was to highlight the strengths of metaproteomics, which integrates with and often relies on other approaches.
Collapse
Affiliation(s)
- Oleg Karaduta
- Department of Biochemistry and Molecular Biology, UAMS, Little Rock, AR 72205, USA;
- Correspondence: ; Tel.: +1-501-251-5381
| | | | - Boris Zybailov
- Department of Biochemistry and Molecular Biology, UAMS, Little Rock, AR 72205, USA;
| |
Collapse
|
31
|
Mehta S, Kumar P, Crane M, Johnson JE, Sajulga R, Nguyen DDA, McGowan T, Arntzen MØ, Griffin TJ, Jagtap PD. Updates on metaQuantome Software for Quantitative Metaproteomics. J Proteome Res 2021; 20:2130-2137. [PMID: 33683127 DOI: 10.1021/acs.jproteome.0c00960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
metaQuantome is a software suite that enables the quantitative analysis, statistical evaluation. and visualization of mass-spectrometry-based metaproteomics data. In the latest update of this software, we have provided several extensions, including a step-by-step training guide, the ability to perform statistical analysis on samples from multiple conditions, and a comparative analysis of metatranscriptomics data. The training module, accessed via the Galaxy Training Network, will help users to use the suite effectively both for functional as well as for taxonomic analysis. We extend the ability of metaQuantome to now perform multi-data-point quantitative and statistical analyses so that studies with measurements across multiple conditions, such as time-course studies, can be analyzed. With an eye on the multiomics analysis of microbial communities, we have also initiated the use of metaQuantome statistical and visualization tools on outputs from metatranscriptomics data, which complements the metagenomic and metaproteomic analyses already available. For this, we have developed a tool named MT2MQ ("metatranscriptomics to metaQuantome"), which takes in outputs from the ASaiM metatranscriptomics workflow and transforms them so that the data can be used as an input for comparative statistical analysis and visualization via metaQuantome. We believe that these improvements to metaQuantome will facilitate the use of the software for quantitative metaproteomics and metatranscriptomics and will enable multipoint data analysis. These improvements will take us a step toward integrative multiomic microbiome analysis so as to understand dynamic taxonomic and functional responses of these complex systems in a variety of biological contexts. The updated metaQuantome and MT2MQ are open-source software and are available via the Galaxy Toolshed and GitHub.
Collapse
Affiliation(s)
- Subina Mehta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Praveen Kumar
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Marie Crane
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - James E Johnson
- Minnesota Supercomputing Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Ray Sajulga
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Dinh Duy An Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Thomas McGowan
- Minnesota Supercomputing Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Salvato F, Hettich RL, Kleiner M. Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 2021; 17:e1009245. [PMID: 33630960 PMCID: PMC7906368 DOI: 10.1371/journal.ppat.1009245] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (FS); (MK)
| | - Robert L. Hettich
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee, United States of America
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (FS); (MK)
| |
Collapse
|
33
|
Li L, Figeys D. Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface. Mol Cell Proteomics 2020; 19:1409-1417. [PMID: 32581040 PMCID: PMC8143649 DOI: 10.1074/mcp.r120.002051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in gut microbiome studies have highlighted the importance of explicitly describing the ecological processes beyond correlative analysis. However, we are still at the early stage of understanding the organizational principles of the gut ecosystem, partially because of the limited information provided by currently used analytical tools in ecological modeling practices. Proteomics and metaproteomics can provide a number of insights for ecological studies, including biomass, matter and energy flow, and functional diversity. In this Mini Review, we discuss proteomics and metaproteomics-based experimental strategies that can contribute to studying the ecology, in particular at the mucosal-luminal interface (MLI) where the direct host-microbiome interaction happens. These strategies include isolation protocols for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, and isotopic labeling for tracking nutrient flow. Integration of these technologies can generate spatiotemporal and site-specific biological information that supports mathematical modeling of the ecosystem at the MLI.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
34
|
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Sci Rep 2020; 10:12411. [PMID: 32709972 PMCID: PMC7381632 DOI: 10.1038/s41598-020-69241-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023] Open
Abstract
Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Its composition varies between individuals, and depends on factors related to host and microbial communities, which need to adapt to utilize various nutrients present in gut environment. We profiled fecal microbiota in 63 healthy adult individuals using metaproteomics, and focused on microbial CAZy (carbohydrate-active) enzymes involved in glycan foraging. We identified two distinct CAZy profiles, one with many Bacteroides-derived CAZy in more than one-third of subjects (n = 25), and it associated with high abundance of Bacteroides in most subjects. In a smaller subset of donors (n = 8) with dietary parameters similar to others, microbiota showed intense expression of Prevotella-derived CAZy including exo-beta-(1,4)-xylanase, xylan-1,4-beta-xylosidase, alpha-l-arabinofuranosidase and several other CAZy belonging to glycosyl hydrolase families involved in digestion of complex plant-derived polysaccharides. This associated invariably with high abundance of Prevotella in gut microbiota, while in subjects with lower abundance of Prevotella, microbiota showed no Prevotella-derived CAZy. Identification of Bacteroides- and Prevotella-derived CAZy in microbiota proteome and their association with differences in microbiota composition are in evidence of individual variation in metabolic specialization of gut microbes affecting their colonizing competence.
Collapse
|
35
|
Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H. Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota. J Proteomics 2020; 219:103737. [DOI: 10.1016/j.jprot.2020.103737] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
|