1
|
Poirier A, Le Griel P, Hoffmann I, Perez J, Pernot P, Fresnais J, Baccile N. Ca 2+ and Ag + orient low-molecular weight amphiphile self-assembly into "nano-fishnet" fibrillar hydrogels with unusual β-sheet-like raft domains. SOFT MATTER 2023; 19:378-393. [PMID: 36562421 DOI: 10.1039/d2sm01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and β-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The β-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX - UMR 8234, F-75252, Paris Cedex 05, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| |
Collapse
|
3
|
Baccile N, Derj A, Boissière C, Humblot V, Deniset-Besseau A. Homogeneous supported monolayer from microbial glycolipid biosurfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Baccile N, Ben Messaoud G, Le Griel P, Cowieson N, Perez J, Geys R, De Graeve M, Roelants SLKW, Soetaert W. Palmitic acid sophorolipid biosurfactant: from self-assembled fibrillar network (SAFiN) to hydrogels with fast recovery. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200343. [PMID: 34334020 DOI: 10.1098/rsta.2020.0343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process. pH-resolved in situ small-angle X-ray scattering (SAXS) shows a continuous micelle-to-fibre transition, characterized by an enhanced core-shell contrast between pH 9 and pH 7 and micellar fusion into a flat membrane between pH 7 and pH 6, approximately. Below pH 6, homogeneous, infinitely long nanofibres form by peeling off the membranes. Eventually, the nanofibre network spontaneously forms a thixotropic hydrogel with fast recovery rates after applying an oscillatory strain amplitude out of the linear viscoelastic regime: after being submitted to strain amplitudes during 5 min, the hydrogel recovers about 80% and 100% of its initial elastic modulus after, respectively, 20 s and 10 min. Finally, the strength of the hydrogel depends on the medium's final pH, with an elastic modulus fivefold higher at pH 3 than at pH 6. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Ghazi Ben Messaoud
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Nathan Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48,91192 Gif-sur-Yvette Cedex, France
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| |
Collapse
|
5
|
Baccile N, Zinn T, Laurent GP, Messaoud GB, Cristiglio V, Fernandes FM. Unveiling the Interstitial Pressure between Growing Ice Crystals during Ice-Templating Using a Lipid Lamellar Probe. J Phys Chem Lett 2020; 11:1989-1997. [PMID: 32101432 DOI: 10.1021/acs.jpclett.9b03347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
What is the pressure generated by ice crystals during ice-templating? This work addresses this crucial question by estimating the pressure exerted by oriented ice columns on a supramolecular probe composed of a lipid lamellar hydrogel during directional freezing. This process, also known as freeze-casting, has emerged as a unique processing technique for a broad class of organic, inorganic, soft, and biological materials. Nonetheless, the pressure exerted during and after crystallization between two ice columns is not known, despite its importance with respect to the fragility of the frozen material, especially for biological samples. By using the lamellar period of a glycolipid lamellar hydrogel as a common probe, we couple data obtained from ice-templated-resolved in situ synchrotron small-angle X-ray scattering (SAXS) with data obtained from controlled adiabatic desiccation experiments. We estimate the pressure to vary between 1 ± 10% kbar at -15 °C and 3.5 ± 20% kbar at -60 °C.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Thomas Zinn
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Guillaume P Laurent
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Ghazi Ben Messaoud
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Viviana Cristiglio
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Francisco M Fernandes
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| |
Collapse
|