1
|
Li J, Zhao L, Liu P. One-Step Electrodeposition of Polyaniline Nanorods on Carbon Cloth for High-Performance Flexible Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14297-14307. [PMID: 37756149 DOI: 10.1021/acs.langmuir.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The electrochemical performance of the carbon cloth (CC)-based electrodes is determined by the kind, content, morphology, and size of the modified pseudocapacitive materials, as well as the interaction with CC. Also, such structural parameters were mainly dependent on the deposition condition. More uniform polyaniline (PANI) could be obtained by electrochemical polymerization in comparison to chemical oxidation polymerization. However, two steps of electrodeposition were usually needed for nucleation and growth. Here, based on the comprehensive optimization of the electrodeposition condition, well-defined PANI nanorods anchored on the functionalized carbon cloth (FCC) as flexible electrodes (FCC@PANI) were synthesized by a facile one-step electrochemical polymerization. Compared with the FCC electrode, the resultant FCC@PANI-4 sample possessed good cycling stability (98.3% capacitance retention after 10,000 cycles), higher specific capacitances of 2312 mF cm-2 (1.0 mA cm-2) and 107 F g-1 (1.0 A g-1) with the boosting ratio in the areal specific capacitance (CA), and mass specific capacitances (Cm) of 169 and 181%, respectively. The improvement in both specific capacitance and cycling stability was obtained by the strong interaction between the FCC and the modified PANI nanorods with enhanced utilization efficiency of electroactive materials. Furthermore, the symmetric solid-state device assembled using the FCC@PANI-4 electrode delivered a maximum energy density of 0.079 mWh cm-2 at a power density of 0.363 mW cm-2.
Collapse
Affiliation(s)
- Jinmei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lining Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhang X, Ma J, Wang J, Shi H, Guo J, Fan Y, Nie X, Guo T, Luo X. Modifying the Fiber Structure and Filtration Performance of Polyester Materials Based on Two Different Preparation Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3502-3511. [PMID: 36802660 DOI: 10.1021/acs.langmuir.3c00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How to build a satisfactory indoor environment has become increasingly important. In this paper, the synthesis and improvement of the most widely used polyester materials in China were carried out based on two different preparation methods, and the structures and filtration performances were tested and analyzed. The results showed that a carbon black coating was wrapped on the surfaces of the new synthetic polyester filter fibers. Compared with the original materials, the filtration efficiencies of PM10, PM2.5, and PM1 were increased by 0.88-6.26, 1.68-8.78, and 0.42-4.84%, respectively. The best filtration velocity was 1.1 m/s, and the new synthetic polyester materials with direct impregnation demonstrated superior filtration performance. The filtration efficiency of the new synthetic polyester materials was improved on the particulates with sizes of 1.0-5.0 μm. The filtration performance of G4 was better than that of G3. The filtration efficiencies of PM10, PM2.5, and PM1 were improved by 4.89, 4.20, and 11.69%, respectively. The quality factor value can be used to assess the comprehensive filtration performance of air filters in practical applications. It could provide reference values for the selection of synthetic methods of new filter materials.
Collapse
Affiliation(s)
- Xin Zhang
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jingyao Ma
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiahui Wang
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Huixin Shi
- CSCEC Northwest Design and Research Institute Co., Ltd., Xi'an, Shaanxi 710018, China
| | - Jinping Guo
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yuesheng Fan
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xingxin Nie
- School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Tong Guo
- Zhashui Qintong Construction Co., Ltd., Shangluo, Shaanxi 726000, China
| | - Xiaoxin Luo
- Shaanxi Metallurgical Design & Research Institute Co., Ltd., Xi'an, Shaanxi 710000, China
| |
Collapse
|
3
|
Wang Z, Wu Y, Zhu B, Chen Q, Zhang Y, Xu Z, Sun D, Lin L, Wu D. Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4713-4723. [PMID: 36623166 DOI: 10.1021/acsami.2c18814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Qixiang Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Daoheng Sun
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California94720, United States
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| |
Collapse
|
4
|
Li X, Li J, Liu P. Highly Efficient Solvothermal Synthesis of Poly(1,5-diaminoanthraquinone) Nanoflowers for Energy and Environmental Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14269-14276. [PMID: 36346989 DOI: 10.1021/acs.langmuir.2c02337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Poly(1,5-diaminoanthraquinone) (PDAA) has attracted more interest because of its unique molecular structure. However, the lower polymerization yield limits its practical application. Here, the solvothermal chemically oxidative polymerization of 1,5-diaminoanthraquinone (DAA) was developed, and the well-defined PDAA nanoflowers were obtained with a high yield of 72.6% within 16 h. The PDAA nanoflower-based flexible film electrodes were fabricated with expandable graphene as conductive support, delivering a capacitance of 277 F g-1 and 258 mF cm-2 at 0.5 A g-1 (1 mA cm-2) and superior cycling stability with retention of 99% after 10000 cycles. The flexible symmetric solid-state supercapacitors (SSSCs) possessed a high capacitance of 52.5 F g-1 at 0.25 A g-1 and 96.6 mF cm-2 at 1 mA cm-2 and had only a 14% capacitance loss after 10000 cycles at 0.1 V s-1 as well as excellent flexibility. Besides, the PDAA nanoflowers could be used as self-separable adsorbent for methylene blue (MB) with a capacity of 93.8 mg g-1 at pH 9.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinmei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Influence of acidic type on nanostructures and electrochemical performance of polyaniline for flexible supercapacitors and improved performance based on 3D honeycomb-like nanosheet by doping HPF6 acid. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Sajjad M, Lu W. Honeycomb‐based heterostructures: An emerging platform for advanced energy applications: A review on energy systems. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Muhammad Sajjad
- School of Chemical Sciences and Engineering Yunnan University Kunming 650091 China
- Institute of Energy Storage Technologies Yunnan University Kunming China
| | - Wen Lu
- School of Chemical Sciences and Engineering Yunnan University Kunming 650091 China
- Institute of Energy Storage Technologies Yunnan University Kunming China
| |
Collapse
|
7
|
Liu P, Wang Q, Wang D, Kang X, Niu J. Tetraaniline microcrystals: Promising electrode for long-life supercapacitors. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Wang T, Sun H, Peng T, Liu B, Hou Y, Lei B. Preparation and characterization of polyaniline/p-phenylenediamine grafted graphene oxide composites for supercapacitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Liu M, Li S, Fang Y, Chen Z, Alyas M, Liu J, Zeng X, Zhang L. Mechanical and Self-Healing Behavior of Matrix-Free Polymer Nanocomposites Constructed via Grafted Graphene Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7427-7438. [PMID: 32508099 DOI: 10.1021/acs.langmuir.0c00971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Through molecular dynamics (MD) simulation, the structure and mechanical properties of matrix-free polymer nanocomposites (PNCs) constructed via polymer-grafted graphene nanosheets are studied. The dispersion of graphene sheets is characterized by the radial distribution function (RDF) between graphene sheets. We observe that a longer polymer chain length Lg leads to a relatively better dispersion state attributed to the formation of a better brick-mud structure, effectively screening the van der Waals interactions between sheets. By tuning the interaction strength εend-end between end functional groups of grafted chains, we construct physical networks with various robustness characterized by the formation of the fractal clusters at high εend-end values. The effects of εend-end and Lg on the mechanical properties are examined, and the enhancement of the stress-strain behavior is observed with the increase of εend-end and Lg. Structural evolution during deformation is quantified by calculating the orientation of the graphene sheets and their distribution, the stress decomposition, and the size of the clusters formed between end groups and their distribution. Then, we briefly study the effects of time and temperature on the self-healing behavior of these unique PNCs in the rubbery state. Lastly, the self-healing kinetics is quantitatively analyzed. In general, this work can provide some rational guidelines to design and fabricate matrix-free PNCs with both excellent mechanical and self-healing properties.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Sai Li
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Yue Fang
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Zhudan Chen
- Institute of Automation, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Maha Alyas
- Department of Chemical Engineering, City College of the City University of New York, New York, New York 10031, United States
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China
| |
Collapse
|
10
|
Yang Y, Ma W, Zhu H, Meng H, Wang C, Ma F, Hu Z. Graphene covalently functionalized with 2,6-diaminoanthraquinone (DQ) as a high performance electrode material for supercapacitors. NEW J CHEM 2020. [DOI: 10.1039/d0nj03358h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,6-Diaminoaquinone molecules were covalently modified onto the surface of GO via a nucleophilic displacement reaction between the epoxy groups on the surface of GO and the –NH2 groups of DQ molecules in the presence of ammonia to form a composite material.
Collapse
Affiliation(s)
- Yuying Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| | - Weixia Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| | - Hong Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| | - Haixia Meng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| | - Chengjuan Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| | - Fuquan Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| | - Zhongai Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou
- China
| |
Collapse
|