1
|
Abd Muain MF, Amir Hamzah AS, Chia SL, Yusoff K, Lim HN, Shinya I, Ahmad Tajudin A. Voltammetric-based immunosensing of Newcastle disease virus on polyethylene glycol-containing self-assembled monolayer modified gold electrode. Anal Biochem 2025; 697:115700. [PMID: 39461695 DOI: 10.1016/j.ab.2024.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
A voltammetric immunosensor for the detection of Newcastle disease virus (NDV) has been developed by employing polyclonal antibody targeting NDV (anti-NDV) as a bioreceptor. Anti-NDV was immobilized on polyethylene glycol (PEG)-containing self-assembled monolayer (SAM) which was activated with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimidehydrochloride (EDC) and N-hydroxy succinimide (NHS) coupling on screen-printed gold electrode (SPGE). The introduction of PEG-containing SAM on the SPGE allowed the bioreceptor to covalently bound to the electrode surface whilst still providing a hydrophilic layer on the electrode which is important to greatly reduce non-specific bindings. The bioreceptor functionalized electrode was then allowed to be incubated with NDV-spiked samples. The electrode surface modification with PEG-containing SAM, immobilization of anti-NDV as bioreceptor, up to the detection of NDV were characterized electrochemically through differential pulse voltammetry (DPV) analysis in [Fe(CN)6]3- as the redox probe. Decrement of anodic current peak (Ipa) of [Fe(CN)6]3- was seen as the concentration of NDV increased from 0.156 to 20 HA μL-1 with the limit of detection (LoD) of 1.50 HA μL-1 at 3σ m-1. The detection of NDV in HA μL-1 unit in this study would ease interlaboratory interpretation as it was the same unit used in hemagglutination (HA) assay of conventional NDV diagnosis. The specificity of anti-NDV used as bioreceptor towards NDV was confirmed through western blot analysis, whilst the selectivity of the bioreceptor-functionalized electrode has been tested with allantoic fluid as the negative control in which no apparent changes of anodic peak (Ipa) has been seen. This simple, fast, and less laborious electrochemical detection method could become an alternative to the conventional method for NDV detection.
Collapse
Affiliation(s)
- Mohamad Farid Abd Muain
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Amir Syahir Amir Hamzah
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ikeno Shinya
- Department of Biological Functions Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan.
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Juska VB, Maxwell G, Estrela P, Pemble ME, O'Riordan A. Silicon microfabrication technologies for biology integrated advance devices and interfaces. Biosens Bioelectron 2023; 237:115503. [PMID: 37481868 DOI: 10.1016/j.bios.2023.115503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Miniaturization is the trend to manufacture ever smaller devices and this process requires knowledge, experience, understanding of materials, manufacturing techniques and scaling laws. The fabrication techniques used in semiconductor industry deliver an exceptionally high yield of devices and provide a well-established platform. Today, these miniaturized devices are manufactured with high reproducibility, design flexibility, scalability and multiplexed features to be used in several applications including micro-, nano-fluidics, implantable chips, diagnostics/biosensors and neural probes. We here provide a review on the microfabricated devices used for biology driven science. We will describe the ubiquity of the use of micro-nanofabrication techniques in biology and biotechnology through the fabrication of high-aspect-ratio devices for cell sensing applications, intracellular devices, probes developed for neuroscience-neurotechnology and biosensing of the certain biomarkers. Recently, the research on micro and nanodevices for biology has been progressing rapidly. While the understanding of the unknown biological fields -such as human brain- has been requiring more research with advanced materials and devices, the development protocols of desired devices has been advancing in parallel, which finally meets with some of the requirements of biological sciences. This is a very exciting field and we aim to highlight the impact of micro-nanotechnologies that can shed light on complex biological questions and needs.
Collapse
Affiliation(s)
- Vuslat B Juska
- Tyndall National Institute, University College Cork, T12R5CP, Ireland.
| | - Graeme Maxwell
- Tyndall National Institute, University College Cork, T12R5CP, Ireland
| | - Pedro Estrela
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom; Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12R5CP, Ireland
| |
Collapse
|
3
|
Lian J, Tang W, Yang Y, Vaidyanathan R, Gonçales VR, Arman SY, Tilley RD, Gooding JJ. A Transparent Semiconducting Surface for Capturing and Releasing Single Cells from a Complex Cell Mixture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18079-18086. [PMID: 35385656 DOI: 10.1021/acsami.1c23209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective isolation of individual target cells from a heterogeneous population is technically challenging; however, the ability to retrieve single cells can have high significance in various aspects of biological research. Here, we present a new photoelectrochemical surface based on a transparent electrode that is compatible with high-resolution fluorescence microscopy for isolating individual rare cells from complex biological samples. This is underpinned by two important factors: (i) careful design of the electrode by patterning discrete Au disks of micron dimension on amorphous silicon-indium tin oxide films and (ii) orthogonal surface chemistry, which modifies the patterned electrode with self-assembly layers of different functionalities, to selectively capture target cells on the Au disks and resist cell binding to the amorphous silicon surface. The co-stimulation of the surface using light from a microscope and an electric potential triggers the reductive desorption of the alkanethiol monolayer from the Au disks to release the single cells of interest from the illuminated regions only. Using circulating tumor cells as a model, we demonstrate the capture of cancer cells on an antibody-coated surface and selective release of single cancer cells with low expression of epithelial cell adhesion molecules.
Collapse
Affiliation(s)
- Jiaxin Lian
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australia Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Wenxian Tang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australia Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ying Yang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australia Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ramanathan Vaidyanathan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vinicius R Gonçales
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australia Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Seyed Yousef Arman
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australia Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australia Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Electrochemical Cell-Based Sensor for Detection of Food Hazards. MICROMACHINES 2021; 12:mi12070837. [PMID: 34357247 PMCID: PMC8306248 DOI: 10.3390/mi12070837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
People’s health has been threatened by several common food hazards. Thus, it is very important to establish rapid and accurate methods to detect food hazards. In recent years, biosensors have inspired developments because of their specificity and sensitivity, short reaction time, low cost, small size and easy operation. Owing to their high precision and non-destructive characteristics, cell-based electrochemical detection methods can reflect the damage of food hazards to organisms better. In this review, the characteristics of electrochemical cell-based biosensors and their applications in the detection of common hazards in food are reviewed. The strategies of cell immobilization and 3D culture on electrodes are discussed. The current limitations and further development prospects of cell-based electrochemical biosensors are also evaluated.
Collapse
|
5
|
Sherman LM, Strausser SL, Borsari RK, Jenkins DM, Camden JP. Imidazolinium N-Heterocyclic Carbene Ligands for Enhanced Stability on Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5864-5871. [PMID: 33914540 DOI: 10.1021/acs.langmuir.1c00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as versatile and robust ligands for noble metal surface modifications due to their ability to form compact, self-assembled monolayers. Despite a growing body of research, previous NHC surface modification schemes have employed just two structural motifs: the benzimidazolium NHC and the imidazolium NHC. However, different NHC moieties, including saturated NHCs, are often more effective in homogenous catalysis chemistry than these aforementioned motifs and may impart numerous advantages to NHC surfaces, such as increased stability and access to chiral groups. This work explores the preparation and stability of NHC-coated gold surfaces using imidazolium and imidazolinium NHC ligands. X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy demonstrate the attachment of NHC ligands to the gold surface and show enhanced stability of imidazolinium compared to the traditional imidazolium under harsh acidic conditions.
Collapse
Affiliation(s)
- Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, South Bend 46556, Indiana, United States
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Rowan K Borsari
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, South Bend 46556, Indiana, United States
| |
Collapse
|
6
|
Liu N, Ma Y, Han R, Lv S, Wang P, Luo X. Antifouling biosensors for reliable protein quantification in serum based on designed all-in-one branched peptides. Chem Commun (Camb) 2021; 57:777-780. [PMID: 33355558 DOI: 10.1039/d0cc07220f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antifouling electrochemical biosensors based on designed all-in-one branched peptides that combine anchoring, doping, antifouling and recognizing functions were constructed to support sensitive and reliable protein quantification in complex serum samples.
Collapse
Affiliation(s)
- Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yihui Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Lv
- Department of Neurology, Qingdao Central Hospital, Qingdao 266042, China
| | - Peipei Wang
- Department of Neurology, Qingdao Central Hospital, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
7
|
Yang Y, Mansfeld FM, Kavallaris M, Gaus K, Tilley RD, Gooding JJ. Monitoring the heterogeneity in single cell responses to drugs using electrochemical impedance and electrochemical noise. Chem Sci 2020; 12:2558-2566. [PMID: 34164023 PMCID: PMC8179273 DOI: 10.1039/d0sc05489e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Impedance spectroscopy is a widely used technique for monitoring cell-surface interactions and morphological changes, typically based on averaged signals from thousands of cells. However, acquiring impedance data at the single cell level, can potentially reveal cell-to-cell heterogeneity for example in response to chemotherapeutic agents such as doxorubicin. Here, we present a generic platform where light is used to define and localize the electroactive area, thus enabling the impedance measurements for selected single cells. We firstly tested the platform to assess phenotypic changes in breast cancer cells, at the single cell level, using the change in the cell impedance. We next show that changes in electrochemical noise reflects instantaneous responses of the cells to drugs, prior to any phenotypical changes. We used doxorubicin and monensin as model drugs and found that both drug influx and efflux events affect the impedance noise signals. Finally, we show how the electrochemical noise signal can be combined with fluorescence microscopy, to show that the noise provides information on cell susceptibility and resistance to drugs at the single cell level. Together the combination of electrochemical impedance and electrochemical noise with fluorescence microscopy provides a unique approach to understanding the heterogeneity in the response of single cells to stimuli where there is not phenotypic change.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
| | - Friederike M Mansfeld
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
- Children's Cancer Institute, The University of New South Wales Sydney NSW 2052 Australia
- Monash Institute of Pharmaceutical Sciences, Monash University Melbourne VIC 3052 Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
- Children's Cancer Institute, The University of New South Wales Sydney NSW 2052 Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales Sydney NSW 2052 Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
8
|
Wu Y, Yao Y, Cheong S, Tilley RD, Gooding JJ. Selectively detecting attomolar concentrations of proteins using gold lined nanopores in a nanopore blockade sensor. Chem Sci 2020; 11:12570-12579. [PMID: 34094456 PMCID: PMC8163308 DOI: 10.1039/d0sc04552g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Disease diagnosis at earlier stages requires the development of ultrasensitive biosensors for detecting low-abundance biomarkers in complex biological fluids within a reasonable time frame. Here, we demonstrate the development of an ultrasensitive nanopore blockade biosensor that can rapidly diagnose a model protein biomarker, prostate-specific antigen (PSA) with high selectivity. The solid-state nanopores have gold located only along the length of the nanopore whilst the rest of the membrane is silicon nitride. The orthogonal use of materials allows nanopore arrays with a different surface chemistry inside the nanopore relative to the rest of the membrane to be fabricated. The importance of this differential surface chemistry is it can improve the detection limit of nanopore blockade sensors in quantitative analysis. Based on such functionalized nanopore devices, nanopore blockade sensors lower the limit of detection by an order of magnitude and enable ultrasensitive detection of PSA as low as 80 aM. The findings from this study open new opportunities for nanopore sensors in further developments including optical detection and ultralow detection limit biosensing at complex biological fluids.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney New South Wales 2052 Australia
| | - Yin Yao
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney New South Wales 2052 Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney New South Wales 2052 Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney New South Wales 2052 Australia .,Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney New South Wales 2052 Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
9
|
Sarkar J, Kumar A. Recent Advances in Biomaterial-Based High-Throughput Platforms. Biotechnol J 2020; 16:e2000288. [PMID: 32914497 DOI: 10.1002/biot.202000288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/30/2020] [Indexed: 12/15/2022]
Abstract
High-throughput systems allow screening and analysis of large number of samples simultaneously under same conditions. Over recent years, high-throughput systems have found applications in fields other than drug discovery like bioprocess industries, pollutant detection, material microarrays, etc. With the introduction of materials in such HT platforms, the screening system has been enabled for solid phases apart from conventional solution phase. The use of biomaterials has further facilitated cell-based assays in such platforms. Here, the authors have focused on the recent developments in biomaterial-based platforms including the fabricationusing contact and non-contact methods and utilization of such platforms for discovery of novel biomaterials exploiting interaction of biological entities with surface and bulk properties. Finally, the authors have elaborated on the application of the biomaterial-based high-throughput platforms in tissue engineering and regenerative medicine, cancer and stem cell studies. The studies show encouraging applications of biomaterial microarrays. However, success in clinical applicability still seems to be a far off task majorly due to absence of robust characterization and analysis techniques. Extensive focus is required for developing personalized medicine, analytical tools and storage/shelf-life of cell laden microarrays.
Collapse
Affiliation(s)
- Joyita Sarkar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, BT-6/7, Biotechnology Park, Additional MIDC Area, Aurangabad Road, Jalna, Maharashtra, 43120, India.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
10
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|