1
|
Ma N, Fang J, He L, Zhao X, Wei S, Cai L, Jin C, You C, Wang F. Fabrication of bio-based nanomicrospheres with a 3D porous structure for efficient matrine adsorption using cellulose-functionalized dendritic mesoporous organosilica nanoparticles. Int J Biol Macromol 2025; 309:142924. [PMID: 40203909 DOI: 10.1016/j.ijbiomac.2025.142924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Coptis herbs and Sophora moorcroftiana are primary sources of alkaloids with significant application value, including matrine (MT). Currently, in the separation and purification methods of alkaloids, while the adsorption method is straightforward and practical, most adsorption materials are non-renewable synthetic compounds, which can lead to environmental pollution. Therefore, we utilized TEMPO-modified natural biomass macromolecular cellulose nanocrystals (TOCN) and environmentally degradable dendritic mesoporous organosilica nanoparticles (DMONs) as raw materials, employing a surface assembly technique to coat negatively charged cellulose onto the surface of DMONs. This process led to the synthesis of TOCN@DMONs, an effective and eco-friendly bio-based composite material. The TOCN@DMONs were subjected to various analytical techniques, which unequivocally confirmed its successful synthesis and demonstrated its impeccable physical and chemical properties. The prepared TOCN@DMONs exhibited nanoscale dimensions, abundant pore structure, and excellent thermal stability. The adsorption process of MT on TOCN@DMONs followed the pseudo-second-order kinetics and Langmuir isotherm model. Thermodynamic parameters indicated that the adsorption process was spontaneous, endothermic, and involved weak chemical bonds. These findings indicate that TOCN@DMONs, as a green and highly efficient adsorbent, has a good application potential for the concentration of total alkaloids and the purification of MT from Coptis herbs and Sophora moorcroftiana extracts.
Collapse
Affiliation(s)
- Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Junyang Fang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lingxiao He
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinxu Zhao
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangyu Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lingchao Cai
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, PR China.
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
2
|
Lin H, Ning L, Wei W, Ji X, Wang F, You C. Chitosan- and sodium alginate-coated dendritic mesoporous organosilica nanoparticles improve pesticide adhesion on leaves and enable dual-stimulus-responsive release. Int J Biol Macromol 2025; 299:140211. [PMID: 39848384 DOI: 10.1016/j.ijbiomac.2025.140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
During the application of most conventional pesticides, a significant proportion is lost through rain wash-off and leaf rolling, leading to reduced actual utilization efficiency. In this paper, aminated dendritic mesoporous organosilicon nanoparticles (DMONs-NH2) were synthesized via a one-pot method and used as carriers. Carbendazim (CBZ) was then encapsulated within DMONs-NH2 through hydrogen bonding and electrostatic interactions. The particles were coated with sodium alginate (SA) and chitosan (CS), resulting in CBZ@DMONs@SA/CS nanopesticides with pH-temperature dual responsiveness and sustained-release properties. The SA/CS polymer shell significantly improved the wetting and adhesion of the pesticide on cucumber leaves. After rinsing, the retention rate of CBZ@DMONs@SA/CS was 3.61 times higher than free CBZ. The CBZ@DMONs@SA/CS exhibited 8.59-fold improved photostability under UV irradiation compared to free CBZ. The results of antifungal experiments demonstrated its effectiveness in controlling Botrytis cinereal (B.c.) and extending pesticide action time. Additionally, the acute toxicity of CBZ@DMONs@SA/CS against zebrafish was reduced by 4.75-fold compared to free CBZ. In conclusion, this dual-stimulation-responsive nanopesticide slow-release system with high adhesion and environmentally friendly characteristics provides a novel idea for the sustainable development of modern agriculture.
Collapse
Affiliation(s)
- Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Like Ning
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinyue Ji
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Qu Q, Zhang X, Muhire J, Yang A, Xie M, Xiong R, Cheng W, Pei D, Huang C. Biomimetic triggered release from hydroxyethyl cellulose @ Prussian blue microparticles for tri-modality biofilm removal. Colloids Surf B Biointerfaces 2024; 244:114184. [PMID: 39214032 DOI: 10.1016/j.colsurfb.2024.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Human health is under growing threat from the increasing incidence of bacterial infections. Through their antimicrobial mechanisms, bacteria use appropriate strategies to overcome the antimicrobial effects of antibiotics. The enhanced effects of synergistic strategies on drug-resistant bacteria and biofilms have led to increasing interest in these approaches in recent years. Herein, biomimetic hydroxyethyl cellulose @ Prussian blue microparticles (HEC@PB MPs) generated by the gas-shearing method show a synergistic antibacterial property induced by antibiotic-, photothermal- and photodynamic- effect. MPs, as tri-modality antibacterial agents, exhibit ideal antibacterial activity and biofilm removal effect, and their mode of action on bacteria was investigated. Additionally, a drug release concept encouraged by the ROS-driven breakdown of cellulose, as seen in brown-rot fungi, was introduced. It combines ROS-responsive HEC and photodynamic PB and is likely to fit a niche in many applications.
Collapse
Affiliation(s)
- Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jules Muhire
- Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Min Xie
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Dong Pei
- Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
4
|
Kong L, Li J, Zhang Y, Wang J, Liang K, Xue X, Chen T, Hao Y, Ren H, Wang P, Ge J. Biodegradable Metal Complex-Gated Organosilica for Dually Enhanced Chemodynamic Therapy through GSH Depletions and NIR Light-Triggered Photothermal Effects. Molecules 2024; 29:1177. [PMID: 38474689 DOI: 10.3390/molecules29051177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hollow silica spheres have been widely studied for drug delivery because of their excellent biosecurity and high porosity. However, difficulties with degradation in the tumor microenvironment (TME) and premature leaking during drug delivery limit their clinical applications. To alleviate these problems, herein, hollow organosilica spheres (HOS) were initially prepared using a "selective etching strategy" and loaded with a photothermal drug: new indocyanine green (IR820). Then, the Cu2+-tannic acid complex (Cu-TA) was deposited on the surface of the HOS, and a new nanoplatform named HOS@IR820@Cu-TA (HICT) was finally obtained. The deposition of Cu-TA can gate the pores of HOS completely to prevent the leakage of IR820 and significantly enhance the loading capacity of HOS. Once in the mildly acidic TME, the HOS and outer Cu-TA decompose quickly in response, resulting in the release of Cu2+ and IR820. The released Cu2+ can react with the endogenous glutathione (GSH) to consume it and produce Cu+, leading to the enhanced production of highly toxic ·OH through a Fenton-like reaction due to the overexpressed H2O2 in the TME. Meanwhile, the ·OH generation was remarkably enhanced by the NIR light-responsive photothermal effect of IR820. These collective properties of HICT enable it to be a smart nanomedicine for dually enhanced chemodynamic therapy through GSH depletions and NIR light-triggered photothermal effects.
Collapse
Affiliation(s)
- Lin Kong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxiu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokuang Xue
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiejin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lin H, Ma N, He L, Xu P, Wang F, You C. High deposition and precise stimulus-response release performance of lignin-coated dendritic mesoporous organosilica nanoparticles for efficient pesticide utilization. Int J Biol Macromol 2024; 259:129163. [PMID: 38181906 DOI: 10.1016/j.ijbiomac.2023.129163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The inefficient and improper use of conventional pesticides has prompted the development of targeted and cost-effective pesticide delivery systems, which aim to optimize the efficient utilization of pesticides while minimizing environmental pollution in surrounding areas. In this paper, a dual-stimuli-responsive pesticide slow-release nanopesticide system (NES@DMONs@LGN) was designed in this study, utilizing mesoporous silica (DMONs) as a nanocarrier and lignin (LGN) as a capping agent to encapsulate the pesticide molecules within DMONs. This system enables intelligent release of pesticide molecules while preventing environmental pollution caused by leakage. Additionally, NES@DMONs@LGN exhibit excellent specific loading efficiency. The abundant hydrophilic functional groups in the lignin layer on the surface of NES@DMONs@LGN can establish hydrogen bonds with advanced fatty acids and fatty alcohols present in the waxy epidermis of plants, thereby significantly enhancing carrier wettability and adhesion. Typically, phytophagous lepidopteran pests have an alkaline midgut and possess lignin-degrading enzymes. The NES@DMONs@LGN developed in this study are capable of rapid release under high temperature and alkaline conditions. Therefore, the precise release of pesticide molecules in the target pests can be achieved, thus increasing the actual utilization rate of pesticides. The experimental results demonstrated that NES@DMONs@LGN effectively prevented photodegradation of the active ingredient after 48 h of UV irradiation, resulting in a 3.7-fold improvement in photostability and providing robust UV protection. By encapsulating pesticide molecules with nanocarriers, the release of pesticides in non-targeted environments can be prevented, thereby significantly reducing toxicity to zebrafish. Thus, this study provides a promising solution for sustainable greening of agriculture.
Collapse
Affiliation(s)
- Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingxiao He
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Hang Y, Liu Y, Teng Z, Cao X, Zhu H. Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment. J Nanobiotechnology 2023; 21:101. [PMID: 36945005 PMCID: PMC10029196 DOI: 10.1186/s12951-023-01841-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tumor microenvironment (TME) plays an important role in tumor progression, metastasis and therapy resistance. Remodeling the TME has recently been deemed an attractive tumor therapeutic strategy. Due to its complexity and heterogeneity, remodeling the TME still faces great challenges. With the great advantage of drug loading ability, tumor accumulation, multifactor controllability, and persistent guest molecule release ability, mesoporous nanodrug delivery systems (MNDDSs) have been widely used as effective antitumor drug delivery tools as well as remolding TME. This review summarizes the components and characteristics of the TME, as well as the crosstalk between the TME and cancer cells and focuses on the important role of drug delivery strategies based on MNDDSs in targeted remodeling TME metabolic and synergistic anticancer therapy.
Collapse
Affiliation(s)
- Yinhui Hang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Yanfang Liu
- Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang, 212001, People's Republic of China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China.
| | - Xiongfeng Cao
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China.
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China.
| |
Collapse
|
7
|
Liao K, Niu B, Dong H, He L, Zhou Y, Sun Y, Yang D, Wu C, Pan X, Quan G. A spark to the powder keg: Microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy. J Colloid Interface Sci 2022; 628:189-203. [PMID: 35994900 DOI: 10.1016/j.jcis.2022.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
HYPOTHESIS Chemodynamic therapy (CDT) can efficiently kill cancer cells by producing hydroxyl radical (•OH), a kind of high-toxic reactive oxygen species (ROS), via Fenton or Fenton-like reactions. This study involved a versatile nanomedicine, MSN@DOX/GA-Fe/PDA (M@DGP), delivered via microneedles, which was expected to combine chemodynamic/photothermal/chemotherapy and efficiently increase ROS accumulation to achieve significant therapeutic efficacy against melanoma. EXPERIMENTS The composition of the synthesized nanoparticles was confirmed by a series of characterizations including transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential. The photothermal properties of the nanomedicine was evaluated via infrared imaging, and •OH-producing ability was evaluated by UV-Vis and electron spin resonance. The mechanisms of ROS accumulation were studied in B16 cells by detecting intracellular •OH, glutathione, and ROS levels. The drug-loaded microneedles (M@DGP-MNs) were prepared, and their morphology and mechanical strength were characterized. The in vivo antimelanoma effect and biosafety evaluation of the nanomedicine were investigated in tumor-bearing C57 mice. FINDINGS M@DGP was successfully prepared and could achieve ROS accumulation through a photothermal-enhanced Fenton reaction, polydopamine-induced glutathione consumption, and doxorubicin-mediated mitochondrial dysfunction which induced oxidative stress and apoptosis of tumor cells. M@DGP-MNs showed superior antitumor efficacy and good biosafety, providing a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haibing Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luxuan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
|
9
|
Wang W, Chen C, Ying Y, Lv S, Wang Y, Zhang X, Cai Z, Gu W, Li Z, Jiang G, Gao F. Smart PdH@MnO 2 Yolk-Shell Nanostructures for Spatiotemporally Synchronous Targeted Hydrogen Delivery and Oxygen-Elevated Phototherapy of Melanoma. ACS NANO 2022; 16:5597-5614. [PMID: 35315637 DOI: 10.1021/acsnano.1c10450] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen therapy, an emerging therapeutic strategy, has recently attracted much attention in anticancer medicine. Evidence suggests that hydrogen (H2) can selectively reduce intratumoral overexpressed hydroxyl radicals (•OH) to break the redox homeostasis and thereby lead to redox stress and cell damage. However, the inability to achieve stable hydrogen storage and efficient hydrogen delivery hinders the development of hydrogen therapy. Furthermore, oxygen (O2) deficiency in the tumor microenvironment (TME) and the electron-hole separation inefficiency in photosensitizers have severely limited the efficacy of photodynamic therapy (PDT). Herein, a smart PdH@MnO2/Ce6@HA (PHMCH) yolk-shell nanoplatform is designed to surmount these challenges. PdH tetrahedrons combine stable hydrogen storage and high photothermal conversion efficiency of palladium (Pd) nanomaterials with near-infrared-controlled hydrogen release. Subsequently, the narrow bandgap semiconductor manganese dioxide (MnO2) and the photosensitizer chlorin e6 (Ce6) are introduced into the PHMCH nanoplatform. Upon irradiation, the staggered energy band edges in heterogeneous materials composed of MnO2 and Ce6 can efficiently facilitate electron-hole separation for increasing singlet oxygen (1O2). Moreover, MnO2 nanoshells generate O2 in TME for ameliorating hypoxia and further improving O2-dependent PDT. Finally, the hyaluronic acid-modified PHMCH nanoplatform shows negligible cytotoxicity and selectively targets CD44-overexpressing melanoma cells. The synergistic antitumor performance of the H2-mediated gas therapy combined with photothermal and enhanced PDT can explore more possibilities for the design of gas-mediated cancer therapy.
Collapse
Affiliation(s)
- Wandong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Yu Ying
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Shanrong Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zhiheng Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Wenxiang Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Guan Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| |
Collapse
|
10
|
Hu Y, Bai S, Fan X, Zhou F, Chen B, Tan S, Xu H, Pan A, Liang S, He Y. Autocatalytic oncotherapy nanosystem with glucose depletion for cascade amplification of hypoxia-activated chemotherapy and H2O2-dependent chemodynamic therapy. Biomater Sci 2022; 10:2358-2369. [PMID: 35383789 DOI: 10.1039/d1bm01944a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypoxia-activated prodrug is an appealing oncotherapy strategy, but limited by insufficient tumor hypoxia. Moreover, standalone prodrug fails to treat tumor satisfactorily due to tumor complexity. Herein, a nanosystem (TPZ@FeMSN-GOX) was...
Collapse
Affiliation(s)
- Yao Hu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Song Bai
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xingyu Fan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Fangfang Zhou
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Botao Chen
- Hunan Provincial People's Hospital, the First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
11
|
Hu J, Zhang J, Li L, Bao X, Deng W, Chen K. Chitosan-coated organosilica nanoparticles as a dual responsive delivery system of natural fragrance for axillary odor problem. Carbohydr Polym 2021; 269:118277. [PMID: 34294309 DOI: 10.1016/j.carbpol.2021.118277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Citronellol (CI)-loaded, chitosan (CS)-enclosed dendritic mesoporous organosilica nanoparticles (CI@D-MONs@CS) are successfully fabricated. The synthesized CI@D-MONs@CS present spherical shape with the particle size of 424±24 nm in diameter and dendritic mesopores. CI loading ratio of CI@D-MONs@CS is about 12.42% from TGA analysis. CI release from CI@D-MONs@CS exhibits pH-redox dual responsiveness. More interesting, the axillary deodorant effect is investigated with Staphylococcus haemolyticus in an artificial sweat model. The results show that CI@D-MONs@CS present an excellent bacteria-killing effect and the smell of artificial sweat is greatly improved, avoiding the formation of undesirable odorant compounds from the bacteria. The obtained CI@D-MONs@CS is a potential carrier of natural fragrance or actives with dual responsive release. The application of CI@D-MONs@CS is a new and effective strategy to the axillary odor problem.
Collapse
Affiliation(s)
- Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Jianlei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xiaoli Bao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Kunlin Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, School of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
12
|
Wang Q, Gao Z, Zhong QZ, Wang N, Mei H, Dai Q, Cui J, Hao J. Encapsulation of Enzymes in Metal-Phenolic Network Capsules for the Trigger of Intracellular Cascade Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11292-11300. [PMID: 34516132 DOI: 10.1021/acs.langmuir.1c01821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoengineered capsules encapsulated with functional cargos (e.g., enzymes) are of interest for various applications including catalysis, bioreactions, sensing, and drug delivery. Herein, we report a facile strategy to engineer enzyme-encapsulated metal-phenolic network (MPN) capsules using enzyme-loaded zeolitic imidazolate framework nanoparticles (ZIF-8 NPs) as templates, which can be removed in a mild condition (e.g., ethylenediaminetetraacetic acid (EDTA) solution). The capsule size (from 250 nm to 1 μm) and thickness (from 9.8 to 33.7 nm) are well controlled via varying the template size and coating time, respectively. Importantly, MPN capsules encapsulated with enzymes (i.e., glucose oxidase) can trigger the intracellular cascade reaction via the exhaustion of glucose to produce H2O2 and subsequently generate toxic hydroxyl radicals (•OH) based on the Fenton reaction via the reaction between H2O2 and iron ions in MPN coatings. The intracellular cascade reaction for the generation of •OH is efficient to inhibit cancer cell viability, which is promising for the application in chemodynamic therapy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Hanxiao Mei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Qiong Dai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
13
|
Wang Y, Zhang B, Ding X, Du X. Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications. NANO TODAY 2021; 39:101231. [DOI: 10.1016/j.nantod.2021.101231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Synergic fabrication of combination therapy of Irinotecan and 5-Fluorouracil encapsulated polymeric nanoparticles for the treatment of gastric cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
16
|
You C, Ning L, Wu H, Huang C, Wang F. A biocompatible and pH-responsive nanohydrogel based on cellulose nanocrystal for enhanced toxic reactive oxygen species generation. Carbohydr Polym 2021; 258:117685. [DOI: 10.1016/j.carbpol.2021.117685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/03/2023]
|