1
|
Aslanbay Guler B, Morçimen ZG, Taşdemir Ş, Demirel Z, Turunç E, Şendemir A, Imamoglu E. Design of chemobrionic and biochemobrionic scaffolds for bone tissue engineering. Sci Rep 2024; 14:13764. [PMID: 38877025 PMCID: PMC11178857 DOI: 10.1038/s41598-024-63171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Chemobrionic systems have attracted great attention in material science for development of novel biomimetic materials. This study aims to design a new bioactive material by integrating biosilica into chemobrionic structure, which will be called biochemobrionic, and to comparatively investigate the use of both chemobrionic and biochemobrionic materials as bone scaffolds. Biosilica, isolated from Amphora sp. diatom, was integrated into chemobrionic structure, and a comprehensive set of analysis was conducted to evaluate their morphological, chemical, mechanical, thermal, and biodegradation properties. Then, the effects of both scaffolds on cell biocompatibility and osteogenic differentiation capacity were assessed. Cells attached to the scaffolds, spread out, and covered the entire surface, indicating the absence of cytotoxicity. Biochemobrionic scaffold exhibited a higher level of mineralization and bone formation than the chemobrionic structure due to the osteogenic activity of biosilica. These results present a comprehensive and pioneering understanding of the potential of (bio)chemobrionics for bone regeneration.
Collapse
Affiliation(s)
- Bahar Aslanbay Guler
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Zehra Gül Morçimen
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Şeyma Taşdemir
- Ioengineering Department, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
| | - Zeliha Demirel
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Ezgi Turunç
- Department of Biochemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Aylin Şendemir
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
2
|
Kim BJ. Enzyme-Instructed Self-Assembly of Peptides: From Concept to Representative Applications. Chem Asian J 2022; 17:e202200094. [PMID: 35213091 DOI: 10.1002/asia.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Enzyme-instructed self-assembly, integrating enzymatic reaction and molecular self-assembly, has drawn noticeable attention over the last decade with the intension of being used in valuable applications. Recent advances in the field allow it possible to spatiotemporally control peptide self-assembly in cellular milieu, broadening the potential applications of peptide assemblies to cancer therapy and subcellular delivery. In this minireview, the concept of enzyme-instructed self-assembly of peptide, containing enzymatic trigger and spatiotemporal control, is described. Representative applications in cells are also discussed, followed by outlook on the field of enzyme-instructed self-assembly.
Collapse
Affiliation(s)
- Beom Jin Kim
- University of Ulsan, Chemistry, 12, Techno Industrial Complex-ro, 55 beon-gil, 4776, Ulsan, KOREA, REPUBLIC OF
| |
Collapse
|
3
|
Pugliese R, Montuori M, Gelain F. Bioinspired photo-crosslinkable self-assembling peptides with pH-switchable "on-off" luminescence. NANOSCALE ADVANCES 2022; 4:447-456. [PMID: 36132689 PMCID: PMC9418485 DOI: 10.1039/d1na00688f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 06/16/2023]
Abstract
Significant progress has been made in peptide self-assembly over the past two decades; however, the in situ cross-linking of self-assembling peptides yielding better performing nanomaterials is still in its infancy. Indeed, self-assembling peptides (SAPs), relying only on non-covalent interactions, are mechanically unstable and susceptible to solvent erosion, greatly hindering their practical application. Herein, drawing inspiration from the biological functions of tyrosine, we present a photo-cross-linking approach for the in situ cross-linking of a tyrosine-containing LDLK12 SAP. This method is based on the ruthenium-complex-catalyzed conversion of tyrosine to dityrosine upon light irradiation. We observed a stable formation of dityrosine cross-linking starting from 5 minutes, with a maximum peak after 1 hour of UV irradiation. Furthermore, the presence of a ruthenium complex among the assembled peptide bundles bestows unusual fluorescence intensity stability up to as high as 42 °C, compared to the bare ruthenium complex. Also, due to a direct deprotonation-protonation process between the ruthenium complex and SAP molecules, the fluorescence of the photo-cross-linked SAP is capable of exhibiting "off-on-off-on" luminescence switchable from acid to basic pH. Lastly, we showed that the photo-cross-linked hydrogel exhibited enhanced mechanical stability with a storage modulus of ∼26 kPa, due to the formation of a densely entangled fibrous network of SAP molecules through dityrosine linkages. As such, this ruthenium-mediated photo-cross-linked SAP hydrogel could be useful in the design of novel tyrosine containing SAP materials with intriguing potential for biomedical imaging, pH sensing, photonics, soft electronics, and bioprinting.
Collapse
Affiliation(s)
- Raffaele Pugliese
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo FG Italy
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| | - Monica Montuori
- Biotechnology and Biosciences Department, University of Milano-Bicocca 20162 Milan Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo FG Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| |
Collapse
|
4
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
5
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
6
|
Roy K, Chetia M, Sarkar AK, Chatterjee S. Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb 2+, Hg 2+) absorbents and arsenic( iii/ v) detectors. RSC Adv 2020; 10:42062-42075. [PMID: 35516776 PMCID: PMC9057852 DOI: 10.1039/d0ra08407g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studying assembly of similar types of molecules but extended to multi component systems via the co-assembly phenomenon. We have designed two charge complementary peptides to study their co-assembly in mechanistic detail in the present work. The cooperative self-assembly is mainly driven by electrostatic interaction that is aided by aromatic interactions, hydrogen bonding interactions and hydrophobic interactions. The hydrogels obtained have been employed in waste water remediation. Both the self-assembled and co-assembled hydrogels are capable of removal of different kinds of organic dyes (cationic, anionic and neutral) and toxic metal ions (Ni2+, Co2+, Pb2+ and Hg2+) individually and as a mixture from water with high efficiency. Additionally, the peptides developed in this study can act as ion sensors and detect arsenic in its most toxic (III/V) oxidation states. Molecular understanding of the assembly process is of fundamental importance in the rational design of such simple, robust yet economically viable materials with versatile and novel applications. Self- and co-assembled gels from charge complementary peptides with waste water remediation applications.![]()
Collapse
Affiliation(s)
- Karabi Roy
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Monikha Chetia
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Ankan Kumar Sarkar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Sunanda Chatterjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|