1
|
Fan D, Bajgiran SR, Samghabadi FS, Dutta C, Gillett E, Rossky PJ, Conrad JC, Marciel AB, Landes CF. Imaging Heterogeneous 3D Dynamics of Individual Solutes in a Polyelectrolyte Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37290000 DOI: 10.1021/acs.langmuir.3c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding molecular transport in polyelectrolyte brushes (PEBs) is crucial for applications such as separations, drug delivery, anti-fouling, and biosensors, where structural features of the polymer control intermolecular interactions. The complex structure and local heterogeneity of PEBs, while theoretically predicted, are not easily accessed with conventional experimental methods. In this work, we use 3D single-molecule tracking to understand transport behavior within a cationic poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) brush using an anionic dye, Alexa Fluor 546, as the probe. The analysis is done by a parallelized, unbiased 3D tracking algorithm. Our results explicitly demonstrate that spatial heterogeneity within the brush manifests as heterogeneity of single-molecule displacements. Two distinct populations of probe motion are identified, with anticorrelated axial and lateral transport confinement, which we believe to correspond to intra- vs inter-chain probe motion.
Collapse
Affiliation(s)
- Dongyu Fan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shahryar Ramezani Bajgiran
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Chayan Dutta
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Emil Gillett
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Hanssen KØ, Malthe-Sørenssen A. Perineuronal nets restrict transport near the neuron surface: A coarse-grained molecular dynamics study. Front Comput Neurosci 2022; 16:967735. [DOI: 10.3389/fncom.2022.967735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Perineuronal nets (PNNs) are mesh-like extracellular matrix structures that wrap around certain neurons in the central nervous system. They are hypothesized to stabilize memories in the brain and act as a barrier between cell and extracellular space. As a means to study the impact of PNNs on diffusion, the nets were approximated by negatively charged polymer brushes and simulated by coarse-grained molecular dynamics. Diffusion constants of single neutral and single charged particles were obtained in directions parallel and perpendicular to the brush substrate. The results for the neutral particle were compared to different theories of diffusion in a heuristic manner. Diffusion was found to be considerably reduced for brush spacings smaller than 10 nm, with a pronounced anisotropy for dense brushes. The exact dynamics of the chains was found to have a negligible impact on particle diffusion. The resistance of the brush proved small compared to typical values of the membrane resistance of a neuron, indicating that PNNs likely contribute little to the total resistance of an enwrapped neuron.
Collapse
|
3
|
Qavi AJ, Meserve K, Aman MJ, Vu H, Zeitlin L, Dye JM, Froude JW, Leung DW, Yang L, Holtsberg FW, Bailey RC, Amarasinghe GK. Rapid detection of an Ebola biomarker with optical microring resonators. CELL REPORTS METHODS 2022; 2:100234. [PMID: 35784644 PMCID: PMC9243524 DOI: 10.1016/j.crmeth.2022.100234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 10/31/2022]
Abstract
Ebola virus (EBOV) is a highly infectious pathogen, with a case mortality rate as high as 89%. Rapid therapeutic treatments and supportive measures can drastically improve patient outcome; however, the symptoms of EBOV disease (EVD) lack specificity from other endemic diseases. Given the high mortality and significant symptom overlap, there is a critical need for sensitive, rapid diagnostics for EVD. Facile diagnosis of EVD remains a challenge. Here, we describe a rapid and sensitive diagnostic for EVD through microring resonator sensors in conjunction with a unique biomarker of EBOV infection, soluble glycoprotein (sGP). Microring resonator sensors detected sGP in under 40 min with a limit of detection (LOD) as low as 1.00 ng/mL in serum. Furthermore, we validated our assay with the detection of sGP in serum from EBOV-infected non-human primates. Our results demonstrate the utility of a high-sensitivity diagnostic platform for detection of sGP for diagnosis of EVD.
Collapse
Affiliation(s)
- Abraham J. Qavi
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krista Meserve
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - M. Javad Aman
- Integrated Biotherapeutics, Rockville, MD 20850, USA
| | - Hong Vu
- Integrated Biotherapeutics, Rockville, MD 20850, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - John M. Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jeffrey W. Froude
- United States Army Nuclear and Countering Weapons of Mass Destruction Agency, Fort Belvoir, VA 22060, USA
| | - Daisy W. Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Ryan C. Bailey
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Besford QA, Schubotz S, Chae S, Özdabak Sert AB, Weiss ACG, Auernhammer GK, Uhlmann P, Farinha JPS, Fery A. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces. Molecules 2022; 27:molecules27093043. [PMID: 35566393 PMCID: PMC9102696 DOI: 10.3390/molecules27093043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular permeability through polymer brush chains is implicated in surface lubrication, wettability, and solute capture and release. Probing molecular transport through polymer brushes can reveal information on the polymer nanostructure, with a permeability that is dependent on chain conformation and grafting density. Herein, we introduce a brush system to study the molecular transport of fluorophores from an aqueous droplet into the external “dry” polymer brush with the vapour phase above. The brushes consist of a random copolymer of N-isopropylacrylamide and a Förster resonance energy transfer (FRET) donor-labelled monomer, forming ultrathin brush architectures of about 35 nm in solvated height. Aqueous droplets containing a separate FRET acceptor are placed onto the surfaces, with FRET monitored spatially around the 3-phase contact line. FRET is used to monitor the transport from the droplet to the outside brush, and the changing internal distributions with time as the droplets prepare to recede. This reveals information on the dynamics and distances involved in the molecular transport of the FRET acceptor towards and away from the droplet contact line, which are strongly dependent on the relative humidity of the system. We anticipate our system to be extremely useful for studying lubrication dynamics and surface droplet wettability processes.
Collapse
Affiliation(s)
- Quinn A. Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| | - Simon Schubotz
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Ayşe B. Özdabak Sert
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey;
| | - Alessia C. G. Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Günter K. Auernhammer
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| |
Collapse
|
5
|
Besford QA, Merlitz H, Schubotz S, Yong H, Chae S, Schnepf MJ, Weiss ACG, Auernhammer GK, Sommer JU, Uhlmann P, Fery A. Mechanofluorescent Polymer Brush Surfaces that Spatially Resolve Surface Solvation. ACS NANO 2022; 16:3383-3393. [PMID: 35112848 DOI: 10.1021/acsnano.2c00277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer brushes, consisting of densely end-tethered polymers to a surface, can exhibit rapid and sharp conformational transitions due to specific stimuli, which offer intriguing possibilities for surface-based sensing of the stimuli. The key toward unlocking these possibilities is the development of methods to readily transduce signals from polymer conformational changes. Herein, we report on single-fluorophore integrated ultrathin (<40 nm) polymer brush surfaces that exhibit changing fluorescence properties based on polymer conformation. The basis of our methods is the change in occupied volume as the polymer brush undergoes a collapse transition, which enhances the effective concentration and aggregation of the integrated fluorophores, leading to a self-quenching of the fluorophores' fluorescence and thereby reduced fluorescence lifetimes. By using fluorescence lifetime imaging microscopy, we reveal spatial details on polymer brush conformational transitions across complex interfaces, including at the air-water-solid interface and at the interface of immiscible liquids that solvate the surface. Furthermore, our method identifies the swelling of polymer brushes from outside of a direct droplet (i.e., the polymer phase with vapor above), which is controlled by humidity. These solvation-sensitive surfaces offer a strong potential for surface-based sensing of stimuli-induced phase transitions of polymer brushes with spatially resolved output in high resolution.
Collapse
Affiliation(s)
- Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Simon Schubotz
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Huaisong Yong
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Max J Schnepf
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Alessia C G Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | | | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
- Technische Universität Dresden, Helmholtzstraße 10, 01062 Dresden, Germany
| |
Collapse
|
6
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|