1
|
Zhou Y, Wang B, Ling Z, Liu Q, Fu X, Zhang Y, Zhang R, Hu S, Zhao F, Li X, Bao X, Yang J. Advances in ionogels for proton-exchange membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171099. [PMID: 38387588 DOI: 10.1016/j.scitotenv.2024.171099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
To ensure the long-term performance of proton-exchange membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) have stringent requirements at high temperatures and humidities, as they may lose proton carriers. This issue poses a serious challenge to maintaining their proton conductivity and mechanical performance throughout their service life. Ionogels are ionic liquids (ILs) hybridized with another component (such as organic, inorganic, or organic-inorganic hybrid skeleton). This design is used to maintain the desirable properties of ILs (negligible vapor pressure, thermal stability, and non-flammability), as well as a high ionic conductivity and wide electrochemical stability window with low outflow. Ionogels have opened new routes for designing solid-electrolyte membranes, especially PEMs. This paper reviews recent research progress of ionogels in proton-exchange membranes, focusing on their electrochemical properties and proton transport mechanisms.
Collapse
Affiliation(s)
- Yilin Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiwei Ling
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yanhua Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Feng Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xiao Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xujin Bao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Department of Materials, Loughborough University, Leicestershire LE11 3NW, UK.
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd, Zhuzhou, Hunan 412007, China.
| |
Collapse
|
2
|
Li S, Cheng Y, Zhu H, Xu M, Lv H, Wang Z, Liu G, Song H. Strain-Induced Phase Separation and Mechanomodulation of Ionic Conduction in Anisotropic Nanocomposite Ionogels. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422366 DOI: 10.1021/acsami.3c19167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ionogels have great potential for the development of tissue-like, soft, and stretchable ionotronics. However, conventional isotropic ionogels suffer from poor mechanical properties, low efficient force transmission, and tardy mechanoelectric response, hindering their practical utility. Here, we propose a simple one-step method to fabricate bioinspired anisotropic nanocomposite ionogels based on a combination of strain-induced phase separation and mechanomodulation of ionic conduction in the presence of attapulgite nanorods. These ionogels show high stretchability (747.1% strain), tensile strength (6.42 MPa), Young's modulus (83.49 MPa), and toughness (18.08 MJ/m3). Importantly, the liquid crystalline domain alignment-induced microphase separation and ionic conductivity enhancement during stretching endow these ionogels with an unusual mechanoelectric response and dual-programmable shape-memory properties. Moreover, the anisotropic structure, good elasticity, and unique resistance-strain responsiveness give the ionogel-based strain sensors high sensitivity, rapid response time, excellent fatigue resistance, and unique waveform-discernible strain sensing, which can be applied to real-time monitoring of human motions. The findings offer a promising way to develop bioinspired anisotropic ionogels to modulate the microstructure and properties for practical applications in advanced ionotronics.
Collapse
Affiliation(s)
- Shuaijie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yan Cheng
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongnan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Min Xu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongying Lv
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Zhuoer Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongzan Song
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
3
|
Topuzlu EY, Ulgut B, Dag Ö. Role of Water in the Lyotropic Liquid Crystalline Lithium Iodide-Iodine-Water-C 12E 10 Mesophase as a Gel Electrolyte in a Dye-Sensitized Solar Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8305-8313. [PMID: 34185544 DOI: 10.1021/acs.langmuir.1c01094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By replacing volatile and flammable organic-based electrolytes with gel electrolytes, dye-sensitized solar cells (DSSCs) may be a viable and more practical alternative to other clean energy sources. Although they present a promising alternative, gel electrolytes still have some drawbacks for practical applications, such as low ionic conductivity and infusion difficulties into the pores of the working electrode. Here, we introduce a new one-step fabrication method that uses a lyotropic liquid crystalline (LLC) gel electrolyte (LiI:I2:H2O:C12H25(OCH2CH2)10OH) and a dye (N719) to construct a DSSC that performs (7.32%) 2.2 times better compared with a traditional two-step production. Water plays a key role in the gel electrolyte, where the H2O/LiI mole ratio is around 2.57 under ambient laboratory conditions (ALCs); however, this ratio linearly increases to 4.00 and then to 5.85 at 40 and 75% humidities, respectively, without affecting the two-dimensional (2D) hexagonal structure of the mesophase. The ionic conductivity of the gel electrolyte linearly increases accordingly, by 2.2 (4.8 × 10-5 to 10.6 × 10-5) and 13.1 times (63.0 × 10-5 S/cm) from ALC to 40 and ALC to 75% humidity, respectively. Increasing water in the gel phase improves the conductivity of the LLC mesophase and the short-circuit current (Isc) of the DSSC, but negatively influences the open-circuit voltage (Voc) of the cell, equilibrium reaction between the LiI and I2, and the anchoring of the dye molecules over the titania surface.
Collapse
Affiliation(s)
| | - Burak Ulgut
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|