1
|
Cui S, Han D, Chen G, Liu S, Xu Y, Yu Y, Peng L. Toward Stretchable Flexible Integrated Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11397-11414. [PMID: 39644227 DOI: 10.1021/acsami.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Skin-like flexible sensors hold great potential as the next generation of intelligent electronic devices owing to their broad applications in environmental monitoring, human-machine interfaces, the Internet of Things, and artificial intelligence. Flexible electronics inspired by human skin play a vital role in continuous and real-time health monitoring. This review summarizes recent progress in skin-mountable electronics developed by designing flexible electrodes and substrates into different structures, including serpentine, microcrack, wrinkle, and kirigami. Furthermore, this review briefly discusses advances in wearable integrated sensor systems that mimic the flexibility of human skin, as well as multisensing functions. In the future, innovations in stretchable integrated sensor systems will be crucial to develop next-generation intelligent skin-based sensors for practical applications such as medical diagnosis, treatment, and environment monitoring.
Collapse
Affiliation(s)
- Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Guang Chen
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Shuting Liu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Yuhong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufeng Yu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
2
|
Bi X, Yao M, Huang Z, Wang Z, Shen H, Wong CP, Jiang C. Biomimetic Electronic Skin Based on a Stretchable Ionogel Mechanoreceptor Composed of Crumpled Conductive Rubber Electrodes for Synchronous Strain, Pressure, and Temperature Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38592053 DOI: 10.1021/acsami.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Electronic skin (e-skin) is showing a huge potential in human-computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple noncoupling structure design. Here, a stretchable multimodal biomimetic e-skin was fabricated by integrating layer-by-layer self-assembled crumpled reduced graphene oxide/multiwalled carbon nanotubes film on natural rubber (RGO/MWCNTs@NR) as stretchable conductive electrodes and polyacrylamide/NaCl ionogel as a dielectric layer into an ionotropic capacitive mechanoreceptor. Unlike natural skin receptors, the sandwich-like stretchable ionogel mechanoreceptor possessed a distinct ionotropic capacitive behavior for strain and pressure detection. The results showed that the biomimetic e-skin displayed a negative capacitance change with superior stretchability (0-300%) and a high gauge factor of 0.27 in 180-300% strain, while exhibiting a normal positive piezo-capacitance behavior in vertical pressure range of 0-15 kPa with a maximal sensitivity of 1.759 kPa-1. Based on this feature, the biomimetic e-skin showed an excellent synchronous detection capability of planar strain and vertical pressure in practical wearable applications such as gesture recognition and grasping movement detection without a complicated mathematical or signal decoupling process. In addition, the biomimetic e-skin exhibited a quantifiable linear responsiveness to temperature from 20-90 °C with a temperature coefficient of 0.55%/°C. These intriguing properties gave the biomimetic e-skin the ability to perform a complete function similar to natural skin but beyond its performance for future wearable devices and artificial intelligence devices.
Collapse
Affiliation(s)
- Xiaoyun Bi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Manzhao Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhaoyan Huang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zuhao Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huahao Shen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Can Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
3
|
Hannigan BC, Cuthbert TJ, Ahmadizadeh C, Menon C. Distributed sensing along fibers for smart clothing. SCIENCE ADVANCES 2024; 10:eadj9708. [PMID: 38507488 PMCID: PMC10954209 DOI: 10.1126/sciadv.adj9708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Textile sensors transform our everyday clothing into a means to track movement and biosignals in a completely unobtrusive way. One major hindrance to the adoption of "smart" clothing is the difficulty encountered with connections and space when scaling up the number of sensors. There is a lack of research addressing a key limitation in wearable electronics: Connections between rigid and textile elements are often unreliable, and they require interfacing sensors in a way incompatible with textile mass production methods. We introduce a prototype garment, compact readout circuit, and algorithm to measure localized strain along multiple regions of a fiber. We use a helical auxetic yarn sensor with tunable sensitivity along its length to selectively respond to strain signals. We demonstrate distributed sensing in clothing, monitoring arm joint angles from a single continuous fiber. Compared to optical motion capture, we achieve around five degrees error in reconstructing shoulder, elbow, and wrist joint angles.
Collapse
Affiliation(s)
- Brett C. Hannigan
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| | - Tyler J. Cuthbert
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| | - Chakaveh Ahmadizadeh
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| |
Collapse
|
4
|
Nauman A, Khaliq HS, Choi JC, Lee JW, Kim HR. Topologically Engineered Strain Redistribution in Elastomeric Substrates for Dually Tunable Anisotropic Plasmomechanical Responses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6337-6347. [PMID: 38285501 DOI: 10.1021/acsami.3c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The prompt visual response is considered to be a highly intuitive tenet among sensors. Therefore, plasmomechanical strain sensors, which exhibit dynamic structural color changes, have recently been developed by using mechanical stimulus-based elastomeric substrates for wearable sensors. However, the reported plasmomechanical strain sensors either lack directional sensitivity or require complex signal processing and device design strategies to ensure anisotropic optical responses. To the best of our knowledge, there have been no reports on utilizing anisotropic mechanical substrates to obtain directional optical responses. Herein, we propose an anisotropic plasmomechanical sensor to distinguish between the applied force direction and the force magnitude. We employ a simple strain-engineered topological elastomer to mechanically transform closely packed metallic nanoparticles (NPs) into anisotropic directional rearrangements depending on the applied force direction. The proposed structure consists of a heterogeneous-modulus elastomer that exhibits a highly direction-dependent Poisson effect owing to the periodically line-patterned local strain redistribution occurring due to the same magnitude of applied external force. Consequently, the reorientation of the self-assembled gold (Au)-NP array manifests dual anisotropy, i.e., force- and polarization-direction-dependent plasmonic coupling. The cost-effectiveness and simple design of our proposed heterogeneous-modulus platform pave the way for numerous optical applications based on dynamic transformation and topological inhomogeneities.
Collapse
Affiliation(s)
- Asad Nauman
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hafiz Saad Khaliq
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Chan Choi
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae-Won Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hak-Rin Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Dual Network Hydrogel with High Mechanical Properties, Electrical Conductivity, Water Retention and Frost Resistance, Suitable for Wearable Strain Sensors. Gels 2023; 9:gels9030224. [PMID: 36975673 PMCID: PMC10048269 DOI: 10.3390/gels9030224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
With the progress of science and technology, intelligent wearable devices have become more and more popular in our daily life. Hydrogels are widely used in flexible sensors due to their good tensile and electrical conductivity. However, traditional water-based hydrogels are limited by shortcomings of water retention and frost resistance if they are used as the application materials of flexible sensors. In this study, the composite hydrogels formed by polyacrylamide (PAM) and TEMPO-Oxidized Cellulose Nanofibers (TOCNs) are immersed in LiCl/CaCl2/GI solvent to form double network (DN) hydrogel with better mechanical properties. The method of solvent replacement give the hydrogel good water retention and frost resistance, and the weight retention rate of the hydrogel was 80.5% after 15 days. The organic hydrogels still have good electrical and mechanical properties after 10 months, and can work normally at −20 °C, and has excellent transparency. The organic hydrogel show satisfactory sensitivity to tensile deformation, which has great potential in the field of strain sensors.
Collapse
|
6
|
Kang B, Yan X, Zhao Z, Song S. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7013-7023. [PMID: 35613322 DOI: 10.1021/acs.langmuir.2c00647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel-based sensors serve as an ideal platform for developing personalized wearable electronics due to their high flexibility and conformability. However, the weak stretchability and inferior conductivity of hydrogels have severely restricted their large-scale application. Herein, a natural polymer-based conductive hydrogel integrated with favorable mechanical properties, good adhesive performance, and excellent fatigue resistance was fabricated via interpenetrating tannic acid (TA) into a chitosan (CS) cross-linked network in an acidic aqueous solution. The hydrogel was composed of a regular hierarchical porous structure, which was built by the hydrogen bonding between TA and CS. In addition, the hydrogels exhibited adjustable mechanical properties (maximum yield stress of 7000 Pa) and good stretchability (strain up to 320%). Benefiting from the abundant catechol groups of TA, the proposed hydrogels could repeatedly adhere to various material surfaces and could be easily peeled off without residue. Moreover, the hydrogel exhibited stable conductivity, high stretching sensitivity (gauge factor of 2.956), rapid response time (930 ms), and excellent durability (>300 cycles), which can be assembled as a strain sensor to attach to the human body for precise monitoring of human exercise behavior, distinguishing physiological signals, and recognizing speech. Furthermore, the prepared hydrogels also exhibited stable sensing performance to temperature. As a result, the hydrogels exhibited dual sensory performance for both temperature and strain deformation. It is anticipated that the incorporation of strain sensors and thermal sensors will provide theoretical guidance for developing multifunctional conductive hydrogels and pave a way for the versatile application of hydrogel-based flexible sensors in wearable devices and soft actuators.
Collapse
Affiliation(s)
- Beibei Kang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Xiangrui Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
7
|
Kim MS, Kim S, Choi J, Kim S, Han C, Lee Y, Jung Y, Park J, Oh S, Bae BS, Lim H, Park I. Stretchable Printed Circuit Board Based on Leak-Free Liquid Metal Interconnection and Local Strain Control. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1826-1837. [PMID: 34931517 DOI: 10.1021/acsami.1c16177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to realize a transition from conventional to stretchable electronics, it is necessary to make a universal stretchable circuit board in which passive/active components can be robustly integrated. We developed a stretchable printed circuit board (s-PCB) platform that enables easy and reliable integration of various electronic components by utilizing a modulus-gradient polymeric substrate, liquid metal amalgam (LMA) circuit traces, and Ag nanowire (AgNW) contact pads. Due to the LMA-AgNW biphasic structure of interconnection, the LMA is hermetically sealed by a homogeneous interface, realizing complete leak-free characteristics. Furthermore, integration reliability is successfully achieved by local strain control of the stretchable substrate with a selective glass fiber reinforcement (GFR). A strain localization derived by GFR makes almost 50,000% of strain difference within the board, and the amount of deformation applied to the constituent elements can be engineered. We finally demonstrated that the proposed integrated platform can be utilized as a universal s-PCB capable of integrating rigid/conventional electronic components and soft material-based functional elements with negligible signal distortion under various mechanical deformations.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwan Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seonggi Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Chankyu Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngdo Jung
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jaeho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunjong Oh
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Byeong-Soo Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuneui Lim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Zhao Y, Shen T, Zhang M, Yin R, Zheng Y, Liu H, Sun H, Liu C, Shen C. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Zhu P, Zhu J, Xue X, Song Y. Stretchable Filler/Solid Rubber Piezoresistive Thread Sensor for Gesture Recognition. MICROMACHINES 2021; 13:7. [PMID: 35056173 PMCID: PMC8780386 DOI: 10.3390/mi13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Recently, the stretchable piezoresistive composites have become a focus in the fields of the biomechanical sensing and human posture recognition because they can be directly and conformally attached to bodies and clothes. Here, we present a stretchable piezoresistive thread sensor (SPTS) based on Ag plated glass microspheres (Ag@GMs)/solid rubber (SR) composite, which was prepared using new shear dispersion and extrusion vulcanization technology. The SPTS has the high gauge factors (7.8~11.1) over a large stretching range (0-50%) and approximate linear curves about the relative change of resistance versus the applied strain. Meanwhile, the SPTS demonstrates that the hysteresis is as low as 2.6% and has great stability during 1000 stretching/releasing cycles at 50% strain. Considering the excellent mechanical strain-driven characteristic, the SPTS was carried out to monitor posture recognitions and facial movements. Moreover, the novel SPTS can be successfully integrated with software and hardware information modules to realize an intelligent gesture recognition system, which can promptly and accurately reflect the produced electrical signals about digital gestures, and successfully be translated into text and voice. This work demonstrates great progress in stretchable piezoresistive sensors and provides a new strategy for achieving a real-time and effective-communication intelligent gesture recognition system.
Collapse
Affiliation(s)
- Penghua Zhu
- School of Computer, North China Institute of Aerospace Engineering, Langfang 065000, China; (P.Z.); (X.X.); (Y.S.)
- Aerospace Software Joint Innovation Center, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Jie Zhu
- School of Computer, North China Institute of Aerospace Engineering, Langfang 065000, China; (P.Z.); (X.X.); (Y.S.)
- Aerospace Software Joint Innovation Center, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Xiaofei Xue
- School of Computer, North China Institute of Aerospace Engineering, Langfang 065000, China; (P.Z.); (X.X.); (Y.S.)
| | - Yongtao Song
- School of Computer, North China Institute of Aerospace Engineering, Langfang 065000, China; (P.Z.); (X.X.); (Y.S.)
| |
Collapse
|
10
|
Kee J, Ahn H, Park H, Seo YS, Yeo YH, Park WH, Koo J. Stretchable and Self-Healable Poly(styrene- co-acrylonitrile) Elastomer with Metal-Ligand Coordination Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13998-14005. [PMID: 34812639 DOI: 10.1021/acs.langmuir.1c01786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, soft electronics have attracted significant attention for various applications such as flexible devices, artificial electronic skins, and wearable devices. For practical applications, the key requirements are an appropriate electrical conductivity and excellent elastic properties. Herein, using the cyano-silver complexes resulting from coordination bonds between the nitrile group of poly(styrene-co-acrylonitrile) (SAN) and Ag ions, a self-healing elastomer demonstrating electrical conductivity is obtained. Because of these coordination complexes, the Ag-SAN elastomer possesses elasticity, compared with pristine SAN. The fracture strain of the Ag-SAN elastomers increased with the amount of added Ag ions, reaching up to 1000%. Additionally, owing to the presence of reversible coordination bonds, the elastomer exhibits self-healing properties at room temperature and electrical conductivity, thereby improving the possibility of its utilization in novel applications wherein elastic materials are generally exposed to external stimuli.
Collapse
Affiliation(s)
- Jinho Kee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Korea
| | - Hyeok Park
- Department of Nano and Advanced Materials Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
| | - Young-Soo Seo
- Department of Nano and Advanced Materials Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
| | - Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Jaseung Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Li T, Su Y, Chen F, Liao X, Wu Q, Kang Y, Tan Y, Zhou Z. A Skin‐Like and Highly Stretchable Optical Fiber Sensor with the Hybrid Coding of Wavelength–Light Intensity. ADVANCED INTELLIGENT SYSTEMS 2021. [DOI: 10.1002/aisy.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Yifei Su
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Fayin Chen
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Xinqin Liao
- School of Electronic Science and Engineering Xiamen University 422 Siming South Road Xiamen 361005 China
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital Sichuan University No. 37 Guo Xue Alley, Wuhou District Chengdu Sichuan 610041 China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital Sichuan University No. 37 Guo Xue Alley, Wuhou District Chengdu Sichuan 610041 China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
12
|
Roy K, Jana S, Mallick Z, Ghosh SK, Dutta B, Sarkar S, Sinha C, Mandal D. Two-Dimensional MOF Modulated Fiber Nanogenerator for Effective Acoustoelectric Conversion and Human Motion Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7107-7117. [PMID: 34061539 DOI: 10.1021/acs.langmuir.1c00700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The real-time application of piezoelectric nanogenerators (PNGs) under a harsh environment remains a challenge due to lower output performance and poor durability. Thus, the development of flexible, sensitive, and stable PNGs became a topic of interest to capture different human motions including gesture monitoring to speech recognition. Herein, a scalable approach is adapted where naphthylamine bridging a [Cd(II)-μ-I4] two-dimensional (2D) metal-organic framework (MOF)-reinforced poly(vinylidene fluoride) (PVDF) composite nanofibers mat is prepared to fabricate a flexible and sensitive composite piezoelectric nanogenerator (C-PNG). The needle-shaped MOF was successfully synthesized by the layering and diffusion of two different solutions. The incorporation of single-crystalline 2D MOF ensures a large content of electroactive phases (98%) with a resultant high-magnitude piezoelectric coefficient of 41 pC/N in a composite nanofibers mat due to the interfacial specific interaction with -CH2-/-CF2- dipoles of PVDF. As an outcome, C-PNG generates high electrical output (open-circuit voltage of 22 V and maximum power density of 24 μW/cm2) with a very fast response time (tr ≈ 5 ms) under periodic pressure imparting stimuli. Benefiting from bending and twisting functionality, C-PNG is capable of scavenging biomechanical energy by mimicking complex musculoskeletal motions that broaden its application in wearable electronics and fabric integrated medical devices. In addition, C-PNG also demonstrates an efficient acoustic vibration to electric energy conversion capability with an improved power density and acoustic sensitivity of 6.25 μW and 0.95 V/Pa, respectively. The overall energy conversion efficiency is sufficient to operate several consumer electronics without any energy storage unit. This acoustic observation is further validated by the finite element method-based theoretical simulation. Overall, the 2D MOF-based device design strategy opens up a new possibility to develop a human-motion compatible energy generator and a self-powered acoustic sensor to power up electronic gadgets as well as low-frequency noise detection.
Collapse
Affiliation(s)
| | | | - Zinnia Mallick
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | | | | | | | | | - Dipankar Mandal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|