1
|
He C, He X, Zhang Y, Han X, Yang Y, Shen Y, Wang T, Wu Q, Yang Y, Xu W, Bai J, Wang Z. Development of a Microfluidic Formatted Ultrasound-Controlled Monodisperse Lipid Vesicles' Hydrogel Dressing Combined with Ultrasound for Transdermal Drug Delivery System. Macromol Biosci 2023; 23:e2300049. [PMID: 37178331 DOI: 10.1002/mabi.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Transdermal drug delivery system (TDDS) has attracted much attention in the pharmaceutical technology area. However, the current methods are difficult to ensure penetration efficiency, controllability, and safety in the dermis, so its widespread clinical use has been limited. This work proposes an ultrasound-controlled monodisperse lipid vesicles (U-CMLVs) hydrogel dressing, which combines with ultrasound to form TDDS. Using microfluidic technology, prepare size controllable U-CMLVs with high drug encapsulation efficiency and quantitative encapsulation of ultrasonic response materials, and even uniform mix them with hydrogel to prepare the required thickness of dressings. The high encapsulation efficiency can ensure sufficient dosage of the drugs and further realize the control of ultrasonic response through quantitative encapsulation of ultrasound-responsive materials. Using high frequency (5 MHz, 0.4 W cm-2 ) and low frequency (60 kHz, 1 W cm-2 ) ultrasound to control the movement and rupture of U-CMLVs, the contents not only penetrate the stratum corneum into the epidermis but also break through the bottleneck of penetration efficiency, and deep into the dermis. These findings provide the groundwork for deep, controllable, efficient, and safe drug delivery through TDDS and lay a foundation for further expanding its application.
Collapse
Affiliation(s)
- Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaofeng Han
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center Chongqing Medical University, Chongqing, 400016, China
| | - Yong Shen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yukun Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Xu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Barlow ST, Figueroa B, Fu D, Zhang B. Membrane Tension Modifies Redox Loading and Release in Single Liposome Electroanalysis. Anal Chem 2021; 93:3876-3882. [PMID: 33596378 DOI: 10.1021/acs.analchem.0c04536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we present a study of how liposomes are loaded and release their contents during their electrochemical detection. We loaded 200 nm liposomes with a redox mediator, ferrocyanide, and used amperometry to detect their collision on a carbon-fiber microelectrode (CFE). We found that we could control the favorability of their electroporation process and the amount of ferrocyanide released by modifying the osmolarity of the buffer in which the liposomes were suspended. Interestingly, we observed that the quantity of the released ferrocyanide varied significantly with buffer osmolarity in a nonmonotonic fashion. Using stimulated Raman scattering (SRS), we confirmed that this behavior was partly explained by fluctuations in the intravesicular redox concentration in response to osmotic pressure. To our surprise, the redox concentration obtained from SRS was much greater than that obtained from amperometry, implying that liposomes may release only a fraction of their contents during electroporation. Consistent with this hypothesis, we observed barrages of electrochemical signals that far exceeded the frequency predicted by Poisson statistics, suggesting that single liposomes can collide with the CFE and electroporate multiple times. With this study, we have resolved some outstanding questions surrounding electrochemical detection of liposomes while extending observations from giant unilamellar vesicles to 200 nm liposomes with high temporal resolution and sensitivity.
Collapse
Affiliation(s)
- Samuel T Barlow
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Benjamin Figueroa
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
de Moraes Nogueira AO, Felipe Kokuszi LT, Poester Cordeiro A, Ziebell Salgado H, Costa JAV, Santos LO, de Lima VR. Spirulina sp. LEB 18-extracted phycocyanin: Effects on liposomes' physicochemical parameters and correlation with antiradical/antioxidant properties. Chem Phys Lipids 2021; 236:105064. [PMID: 33609502 DOI: 10.1016/j.chemphyslip.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
This study describes the physicochemical properties of soybean asolectin (ASO) liposomes loaded with phycocyanin (Phy) extracted from Spirulina sp. LEB 18. The effects of Phy in the liposomes' properties were investigated by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR), zeta (ζ)-potential, dynamic light scattering (DLS) and ultraviolet-visible (UV-vis) techniques. Phy restricted the motion of ASO polar and interface groups and disrupted the package arrangement of the lipid hydrophobic regions, as a likely effect of dipolar and π interactions related to its amino acid residues and pyrrole portions. These interactions were correlated to antiradical/antioxidant Phy responses obtained by 2,2-diphenyl-1-picrylhidrazil (DPPH) assay, thiobarbituric acid reactive substances (TBARS) and ferric reducing antioxidant power (FRAP) methods, and discussed to bring new chemical perspectives about Phy-loaded liposomes-related nutraceutical applications in inflammatory and viral infection processes.
Collapse
Affiliation(s)
- Alessandro Oliveira de Moraes Nogueira
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Brazil; Laboratório de Biotecnologia, Brazil
| | - Lucas Thadeu Felipe Kokuszi
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Brazil
| | | | | | - Jorge Alberto Vieira Costa
- Laboratório de Engenharia Bioquímica, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | | | - Vânia Rodrigues de Lima
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Brazil.
| |
Collapse
|