1
|
Liu S, Yang H, Heng X, Yao L, Sun W, Zheng Q, Wu Z, Chen H. Integrating Metabolic Oligosaccharide Engineering and SPAAC Click Chemistry for Constructing Fibrinolytic Cell Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35874-35886. [PMID: 38954798 DOI: 10.1021/acsami.4c07619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
To effectively solve the problem of significant loss of transplanted cells caused by thrombosis during cell transplantation, this study simulates the human fibrinolytic system and combines metabolic oligosaccharide engineering with strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry to construct a cell surface with fibrinolytic activity. First, a copolymer (POL) of oligoethylene glycol methacrylate (OEGMA) and 6-amino-2-(2-methylamido)hexanoic acid (Lys) was synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization, and the dibenzocyclooctyne (DBCO) functional group was introduced into the side chain of the copolymer through an active ester reaction, resulting in a functionalized copolymer DBCO-PEG4-POL with ε-lysine ligands. Then, azide functional groups were introduced onto the surface of HeLa model cells through metabolic oligosaccharide engineering, and DBCO-PEG4-POL was further specifically modified onto the surface of HeLa cells via the SPAAC "click" reaction. In vitro investigations revealed that compared with unmodified HeLa cells, modified cells not only resist the adsorption of nonspecific proteins such as fibrinogen and human serum albumin but also selectively bind to plasminogen in plasma while maintaining good cell viability and proliferative activity. More importantly, upon the activation of adsorbed plasminogen into plasmin, the modified cells exhibited remarkable fibrinolytic activity and were capable of promptly dissolving the primary thrombus formed on their surfaces. This research not only provides a novel approach for constructing transplantable cells with fibrinolytic activity but also offers a new perspective for effectively addressing the significant loss of transplanted cells caused by thrombosis.
Collapse
Affiliation(s)
- Shengjie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qing Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Shu Y, Otake M, Seta Y, Hori K, Kuramochi A, Ohba Y, Teramura Y. Activation of cellular antioxidative stress and migration activities by purified components from immortalized stem cells from human exfoliated deciduous teeth. Sci Rep 2024; 14:15340. [PMID: 38961142 PMCID: PMC11222459 DOI: 10.1038/s41598-024-66213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
Although stem cell-based regenerative medicine has been extensively studied, it remains difficult to reconstruct three dimensional tissues and organs in combination with vascular systems in vitro. One clinically successful therapy is transplantation of mesenchymal stem cells (MSC) into patients with graft versus host disease. However, transplanted cells are immediately damaged and destroyed because of innate immune reactions provoked by thrombogenic inflammation, and patients need to take immunosuppressive drugs for the immunological regulation of allogeneic cells. This reduces the benefits of stem cell transplantation. Therefore, alternative therapies are more realistic options for clinical use. In this study, we aimed to take advantage of the therapeutic efficacy of MSC and use multiple cytokines released from MSC, that is, stem cells from human exfoliated deciduous teeth (SHEDs). Here, we purified components from conditioned media of immortalized SHED (IM-SHED-CM) and evaluated the activities of intracellular dehydrogenase, cell migration, and antioxidative stress by studying the cells. The immortalization of SHED could make the stable supply of CM possible. We found that the fractionated component of 50-100 kD from IM-SHED-CM had higher efficacy than the original IM-SHED-CM in terms of intracellular dehydrogenase and cell migration in which intracellular signal transduction was activated via receptor tyrosine kinases, and the glutathione peroxidase and reductase system was highly active. Although antioxidative stress activities in the fractionated component of 50-100 kD had slightly lower than that of original IM-SHE-CM, the fraction still had the activity. Thus, the use of fractionated components of 50-100 kD from IM-SHED-CM could be an alternative choice for MSC transplantation because the purified components from CM could maintain the effect of cytokines from SHED.
Collapse
Affiliation(s)
- Yujing Shu
- U-Factor Co., Ltd, 1F, ESCALIER Rokubancho, 7-11, Rokubancho, Chiyoda, Tokyo, 102-0085, Japan
| | - Masato Otake
- U-Factor Co., Ltd, 1F, ESCALIER Rokubancho, 7-11, Rokubancho, Chiyoda, Tokyo, 102-0085, Japan
| | - Yasuhiro Seta
- Hitonowa Medical, K.PLAZA 2F, 1-7 Rokubancho, Chiyoda, Tokyo, 102-0085, Japan
| | - Keigo Hori
- U-Factor Co., Ltd, 1F, ESCALIER Rokubancho, 7-11, Rokubancho, Chiyoda, Tokyo, 102-0085, Japan
| | - Akiko Kuramochi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yoshio Ohba
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden.
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
3
|
Chen JY, Huang KT, Yau S, Huang CJ. Rationale Design for Anchoring Pendant Groups of Zwitterionic Polymeric Medical Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13236-13246. [PMID: 38864376 PMCID: PMC11210289 DOI: 10.1021/acs.langmuir.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
A biocompatible and antifouling polymeric medical coating was developed through rational design for anchoring pendant groups for the modification of stainless steel. Zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized individually with three anchoring monomers of carboxyl acrylamides with different alkyl spacers, including acryloylglycine (2-AE), 6-acrylamidohexanoic acid (6-AH), and 11-acrylamidoundecanoic acid (11-AU). The carboxylic acid groups are responsible for the stable grafting of copolymers onto stainless steel via a coordinative interaction with metal oxides. Due to hydrophobic interaction and hydrogen bonding, the anchoring monomers enable the formation of self-assembling structures in solution and at a metallic interface, which can play an important role in the thin film formation and functionality of the coatings. Therefore, surface characterizations of anchoring monomers on stainless steel were conducted to analyze the packing density and strength of the intermolecular hydrogen bonds. The corresponding copolymers were synthesized, and their aggregate structures were assessed, showing micelle aggregation for copolymers with higher hydrophobic compositions. The synergistic effects of inter/intramolecular interactions and hydrophobicity of the anchoring monomers result in the diversity of the thickness, surface coverage, wettability, and friction of the polymeric coatings on stainless steel. More importantly, the antifouling properties of the coatings against bacteria and proteins were strongly correlated to thin film formation. Ultimately, the key lies in deciphering the molecular structure of the anchoring pendants in thin film formation and assessing the effectiveness of the coatings, which led to the development of medical coatings through the graft-onto approach.
Collapse
Affiliation(s)
- Jia-Yin Chen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Kang-Ting Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Shuehlin Yau
- Department
of Chemistry, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| |
Collapse
|
4
|
Luo HD, Moon H, Siren E, Clark M, Drayton M, Kizhakkedathu JN. Investigation on Adaptability and Applicability of Polymer-Mediated Cell Surface Engineering by Ligation with Transglutaminase. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15893-15906. [PMID: 38512725 DOI: 10.1021/acsami.3c19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.
Collapse
Affiliation(s)
- Haiming D Luo
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
| | - Haisle Moon
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C V6T 1Z7, Canada
| | - Erika Siren
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
| | - Meredith Clark
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Matthew Drayton
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C V6T 1Z7, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, B.C. V6T 2B9, Canada
| |
Collapse
|
5
|
Zhong Y, Xu L, Yang C, Xu L, Wang G, Guo Y, Cheng S, Tian X, Wang C, Xie R, Wang X, Ding L, Ju H. Site-selected in situ polymerization for living cell surface engineering. Nat Commun 2023; 14:7285. [PMID: 37949881 PMCID: PMC10638357 DOI: 10.1038/s41467-023-43161-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The construction of polymer-based mimicry on cell surface to manipulate cell behaviors and functions offers promising prospects in the field of biotechnology and cell therapy. However, precise control of polymer grafting sites is essential to successful implementation of biomimicry and functional modulation, which has been overlooked by most current research. Herein, we report a biological site-selected, in situ controlled radical polymerization platform for living cell surface engineering. The method utilizes metabolic labeling techniques to confine the growth sites of polymers and designs a Fenton-RAFT polymerization technique with cytocompatibility. Polymers grown at different sites (glycans, proteins, lipids) have different membrane retention time and exhibit differential effects on the recognition behaviors of cellular glycans. Of particular importance is the achievement of in situ copolymerization of glycomonomers on the outermost natural glycan sites of cell membrane, building a biomimetic glycocalyx with distinct recognition properties.
Collapse
Affiliation(s)
- Yihong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijia Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Le Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuna Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songtao Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changjiang Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Bai S, Zhang J, Gao Y, Chen X, Wang K, Yuan X. Surface Functionalization of Electrospun Scaffolds by QK-AG73 Peptide for Enhanced Interaction with Vascular Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14162-14172. [PMID: 37722015 DOI: 10.1021/acs.langmuir.3c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Rapid endothelialization still remains challenging for blood-contacting biomaterials, especially for long-term, functional, small-diameter vascular grafts. The vascular endothelial growth factor (VEGF)-mimicking QK peptide holds great promise in promoting vascular endothelial cellular activities such as adhesion, spreading, proliferation, and migration. Syndecans are transmembrane proteoglycans that are highly expressed on cell surfaces, including vascular endothelial cells, which can act as docking receptors to provide binding sites for a variety of cellular growth and signaling molecules. Herein, a novel peptide QK-AG73 that coupled the QK domain with the syndecan binding peptide AG73 was proposed, aiming to synergistically enhance the interaction with vascular endothelial cells. In addition, mechanically matched bioactive scaffolds based on poly(l-lactide-co-ε-caprolactone) were successfully prepared by surface functionalization of the covalently combined QK-AG73 peptide. The result showed that the adhesion of human umbilical vein endothelial cells (HUVECs) was increased by approximately 2-fold on QK-AG73-modified surface compared with those modified with a single QK or AG73 peptide. Moreover, surface functionalization of electrospun scaffolds by this QK-AG73 peptide was more efficient in specifically promoting the proliferation of HUVECs and allowing them to grow with an elongated cobblestone-like cell morphology. It was hypothesized that both VEGF receptors and transmembrane syndecan receptors were involved in cellular regulation by the QK-AG73 peptide, which resulted in synergistic improvement of the interactions with vascular endothelial cells and provided a promising strategy to promote endothelialization of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shan Bai
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yong Gao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyan Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
7
|
Tang Y, Qian C. Research progress in leveraging biomaterials for enhancing NK cell immunotherapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:267-278. [PMID: 37476938 PMCID: PMC10409897 DOI: 10.3724/zdxbyxb-2022-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Collapse
Affiliation(s)
- Yingqi Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| | - Chenggen Qian
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| |
Collapse
|
8
|
Rabiee N. Natural components as surface engineering agents for CRISPR delivery. ENVIRONMENTAL RESEARCH 2023:116333. [PMID: 37286127 DOI: 10.1016/j.envres.2023.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
This perspective article discusses the potential of using natural and environmentally friendly components as surface engineering agents for CRISPR delivery. Traditional delivery methods for CRISPR components have limitations and safety concerns, and surface engineering has emerged as a promising approach. The perspective provides an overview of current research, including the use of lipids, proteins, natural components (like leaf extracts), and polysaccharides to modify the surface of nanoparticles and improve delivery efficiency. The advantages of using natural components include biocompatibility, biodegradability, engineered functionality, cost-effectiveness, and environmental friendliness. The author also discusses the challenges and future perspective of this field, such as a better understanding of underlying mechanisms and optimization of delivery methods for different cell types and tissues, as well as the generation of novel inorganic nanomaterials, including MOF and MXene, for CRISPR delivery, and their synergistic potentials using leaf extracts and natural components. The use of natural components as surface engineering agents for CRISPR delivery has the potential to overcome the limitations of traditional delivery methods, eliminating the biological challenges, and represents a promising area of research.
Collapse
Affiliation(s)
- Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
9
|
Cai F, Ren Y, Dai J, Yang J, Shi X. Effects of Various Cell Surface Engineering Reactions on the Biological Behavior of Mammalian Cells. Macromol Biosci 2023; 23:e2200379. [PMID: 36579789 DOI: 10.1002/mabi.202200379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Cell surface engineering technologies can regulate cell function and behavior by modifying the cell surface. Previous studies have mainly focused on investigating the effects of cell surface engineering reactions and materials on cell activity. However, they do not comprehensively analyze other cellular processes. This study exploits covalent bonding, hydrophobic interactions, and electrostatic interactions to modify the macromolecules succinimide ester-methoxy polyethylene glycol (NHS-mPEG), distearoyl phosphoethanolamine-methoxy polyethylene glycol (DSPE-mPEG), and poly-L-lysine (PLL), respectively, on the cell surface. This work systematically investigates the effects of the three surface engineering reactions on the behavior of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts, including viability, growth, proliferation, cell cycle, adhesion, and migration. The results reveals that the PLL modification method notably affects cell viability and G2/M arrest and has a short modification duration. However, the DSPE-mPEG and NHS-mPEG modification methods have little effect on cell viability and proliferation but have a prolonged modification duration. Moreover, the DSPE-mPEG modification method highly affects cell adherence. Further, the NHS-mPEG modification method can significantly improve the migration ability of HUVECs by reducing the area of focal adhesions. The findings of this study will contribute to the application of cell surface engineering technology in the biomedical field.
Collapse
Affiliation(s)
- Fengying Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yafeng Ren
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jiajia Dai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| |
Collapse
|
10
|
Tang J, Chen X, Shi H, Zhang M, Zhou Z, Zhang C, Ke T, Kong D, Li C. Prebiotic inulin nanocoating for pancreatic islet surface engineering. Biomater Sci 2023; 11:1470-1485. [PMID: 36602201 DOI: 10.1039/d2bm01009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic islet surface engineering has been proposed as an "easy-to-adopt" approach to enhance post-transplantation islet engraftment for treatment against diabetes. Inulin is an FDA-approved dietary prebiotic with reported anti-diabetic, anti-inflammatory, anti-hypoxic and pro-angiogenic properties. We therefore assessed whether inulin would be a viable option for islet surface engineering. Inulin was oxidized to generate inulin-CHO, which would bind to the cell membrane via covalent bond formation between -CHO and -NH2 across the islet cell membrane. In vitro assessments demonstrated enhanced islet viability and better glucose-induced insulin secretion from inulin-coated (5 mg mL-1) islets, which was accompanied by enhanced revascularization, shown as significantly enhanced tube formation and branching of islet endothelial MS1 cells following co-culture with inulin-coated islets. Reduction of cytokine-induced cell death was also observed from inulin-coated islets following exposure to pro-inflammatory cytokine LPS. LPS-induced ROS production was significantly dampened by 44% in inulin-coated islets when compared to controls. RNA-seq analysis of inulin-coated and control islets identified expression alterations of genes involved in islet function, vascular formation and immune regulation, supporting the positive impact of inulin on islet preservation. In vivo examination using streptozotocin (STZ)-induced hyperglycemic mice further showed moderately better maintained plasma glucose levels in mice received transplantation of inulin-coated islets, attributable to ameliorated CD45+ immune cell infiltration and improved in vivo graft vascularization. We therefore propose islet surface engineering with inulin as safe and beneficial, and further assessment is required to verify its applicability in clinical islet transplantation.
Collapse
Affiliation(s)
- Jianghai Tang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Xuanjin Chen
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Hang Shi
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
11
|
Mizuta R, Sasaki Y, Katagiri K, Sawada SI, Akiyoshi K. Reversible conjugation of biomembrane vesicles with magnetic nanoparticles using a self-assembled nanogel interface: single particle analysis using imaging flow cytometry. NANOSCALE ADVANCES 2022; 4:1999-2010. [PMID: 36133411 PMCID: PMC9419520 DOI: 10.1039/d1na00834j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2022] [Indexed: 06/16/2023]
Abstract
Nanoscale biomembrane vesicles such as liposomes and extracellular vesicles are promising materials for therapeutic delivery applications. However, modification processes that disrupt the biomembrane affect the performance of these systems. Non-covalent functionalization approaches that are facile and easily reversed by environmental triggers are therefore being widely investigated. In this study, liposomes were successfully hybridized with magnetic iron oxide particles using a cholesterol-modified pullulan nanogel interface. Both the magnetic nanoparticles and the hydrophobic core of the lipid bilayer interacted with the hydrophobic cholesteryl moieties, resulting in stable hybrids after simple mixing. Single particle analysis by imaging flow cytometry showed that the hybrid particles interacted in solution. Calcein loaded liposomes were not disrupted by the hybridization, showing that conjugation did not affect membrane stability. The hybrids could be magnetically separated and showed significantly enhanced uptake by HeLa cells when a magnetic field was applied. Differential scanning calorimetry revealed that the hybridization mechanism involved hydrophobic cholesteryl inserting into the biomembrane. Furthermore, exposure of the hybrids to fetal bovine serum proteins reversed the hybridization in a concentration dependent manner, indicating that the interaction was both reversible and controllable. This is the first example of reversible inorganic material conjugation with a biomembrane that has been confirmed by single particle analysis. Both the magnetic nanogel/liposome hybrids and the imaging flow cytometry analysis method have the potential to significantly contribute to therapeutic delivery and nanomaterial development.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| | - Kiyofumi Katagiri
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| |
Collapse
|
12
|
Hurd MD, Goel I, Sakai Y, Teramura Y. Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine. Regen Ther 2021; 18:408-417. [PMID: 34722837 PMCID: PMC8517544 DOI: 10.1016/j.reth.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide and is expected to increase in the future with the aging population. Currently, there are no clinically available treatments for damage sustained during an ischemic stroke, but much research is being conducted in this area. In this review, we will introduce current ischemic stroke treatments along with their limitations, as well as research on potential short and long-term future treatments. There are advantages and disadvantages in these potential treatments, but our understanding of these methods and their effectiveness in clinical trials are improving. We are confident that some future treatments introduced in this review will become commonly used in clinical settings in the future.
Collapse
Affiliation(s)
- Mason Daniel Hurd
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Isha Goel
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| |
Collapse
|
13
|
Sato Y, Asawa K, Huang T, Noiri M, Nakamura N, Ekdahl KN, Nilsson B, Ishihara K, Teramura Y. Induction of Spontaneous Liposome Adsorption by Exogenous Surface Modification with Cell-Penetrating Peptide-Conjugated Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9711-9723. [PMID: 34342462 DOI: 10.1021/acs.langmuir.1c01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of amphiphilic molecules such as poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) enables incorporation into liposome surfaces by exogenous addition as a result of the self-assembly with lipids. This technique can be applicable for manipulation of both liposomes and cells. In this study, we aimed to characterize Tat peptide (YGRKKRRQRRR)-conjugated PEG-lipids when used to exogenously surface modify liposomes (size: ca. 100 nm). We earlier reported that cells, which were surface modified with Tat peptides conjugated to PEG-lipids could attach spontaneously to material surfaces without any chemical modification. Here, we synthesized different types of Tat-PEG-lipids by combining PEG of different molecular weights (5 and 40 kDa) with different lipids with three acyl chains (myristoyl, palmitoyl, and stearoyl, respectively) and then studied the spontaneous adsorption of modified liposomes onto a substrate surface induced by the different Tat-PEG-lipids. The amount of adsorbed liposomes strongly depended on the number of incorporated Tat-PEG-lipid moieties: a decrease in both the PEG and the acyl chain lengths led to adsorption of higher amounts of liposomes. Furthermore, when a collagenase-cleavable amino acid sequence was inserted between the Tat sequence and the PEG segment, adsorbed liposomes could be harvested from the substrate by collagenase treatment with no difference in desorption efficiency between the different Tat-PEG-lipids. Thus, Tat-PEG-lipid can be a suitable tool for the manipulation of liposomes and cells.
Collapse
Affiliation(s)
- Yuya Sato
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenta Asawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tianwei Huang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Noiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central Fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
14
|
Biomaterials for Cell-Surface Engineering and Their Efficacy. J Funct Biomater 2021; 12:jfb12030041. [PMID: 34287337 PMCID: PMC8293134 DOI: 10.3390/jfb12030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis. According to the target disease, various therapeutic cells can be engineered to improve their survival and regenerative activity, and there are several types of biomaterials available for cell-surface engineering. In this review, biomaterial types and application strategies for cell-surface engineering are presented along with their expected efficacy.
Collapse
|
15
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|