1
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 PMCID: PMC12023540 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P. Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Akcay Ogur F, Mamasoglu S, Perry SL, Akin FA, Kayitmazer AB. Interactions between Hyaluronic Acid and Chitosan by Isothermal Titration Calorimetry: The Effect of Ionic Strength, pH, and Polymer Molecular Weight. J Phys Chem B 2024; 128:9022-9035. [PMID: 39248492 DOI: 10.1021/acs.jpcb.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Hyaluronic acid (HA)/chitosan (CHI) complex coacervates have recently gained interest due to the pH-dependent ionization and semiflexibility of the polymers as well as their applicability in tissue engineering. Here, we apply isothermal titration calorimetry (ITC) to understand the apparent thermodynamics of coacervation for HA/CHI as a function of the pH, ionic strength, and chain length. We couple these ITC experiments with the knowledge of the charge states of HA and CHI from potentiometric titration to understand the mechanistic aspects of complex formation. Our data demonstrate that the driving force for the complex coacervation of HA and CHI is entropic in nature and this driving force decreased with increasing ionic strength. We also observed a decrease in the stoichiometry for ion-pairing with increasing ionic strength, which we suggest is a consequence of the changing degree of ionization for HA at higher ionic strengths. An increase in the strength of interactions with pH was hypothesized to also be a result of changes in the degree of ionization of HA, though stronger interactions were observed at the lowest pH tested, likely due to contributions from hydrogen bonding between HA and CHI.
Collapse
Affiliation(s)
- Fatma Akcay Ogur
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - Sezin Mamasoglu
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Fatma Ahu Akin
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| | - A Basak Kayitmazer
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkiye
| |
Collapse
|
3
|
Torres PB, Baldor S, Quiroga E, Ramirez-Pastor AJ, Spelzini D, Boeris V, Narambuena CF. Modulation of the electrostatic potential around α-lactalbumin using oligoelectrolyte chains, pH and salt concentration. SOFT MATTER 2024; 20:2100-2112. [PMID: 38348915 DOI: 10.1039/d3sm01414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In this study, we conducted a comprehensive computational investigation of the interaction between α-lactalbumin, a small globular protein, and strong anionic oligoelectrolyte chains with a polymerization degree from 2 to 9. Both the protein and oligoelectrolyte chains are represented using coarse-grained models, and their properties were calculated by the Monte Carlo method under constant pH conditions. We were able to estimate the effects of this interaction on the electrostatic potential around the protein. At acidic pH, the protein had a net positive charge; therefore, the electrostatic potential around it was also positive. To neutralize or reverse this electrostatic potential, oligoelectrolyte chains with a minimum size of six monomers were necessary. Simultaneously, low salt concentrations were required as elevated salt levels led to a significant attenuation of the electrostatic interactions and the corresponding electrostatic potential.
Collapse
Affiliation(s)
- Paola B Torres
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, Av. General Urquiza 314 C.P, M5600, San Rafael, Argentina.
| | - Sofia Baldor
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Fisicoquímica, Universidad Nacional de Rosario - CONICET, Rosario 2000, Argentina
| | - Evelina Quiroga
- Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis D5700BWS, Argentina
| | - Antonio Jose Ramirez-Pastor
- Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis D5700BWS, Argentina
| | - Dario Spelzini
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Fisicoquímica, Universidad Nacional de Rosario - CONICET, Rosario 2000, Argentina
| | - Valeria Boeris
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Fisicoquímica, Universidad Nacional de Rosario - CONICET, Rosario 2000, Argentina
| | - Claudio F Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, Av. General Urquiza 314 C.P, M5600, San Rafael, Argentina.
| |
Collapse
|
4
|
Popova TO, Borisov OV, Zhulina EB. Polyelectrolyte Brushes with Protein-Like Nanocolloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1232-1246. [PMID: 38176061 DOI: 10.1021/acs.langmuir.3c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Electrostatic interaction of ampholytic nanocolloidal particles (NPs), which mimic globular proteins, with polyelectrolyte brushes is analyzed within mean-field Poisson-Boltzmann approximation. In accordance with experimental findings, the theory predicts that an electrostatic driving force for the particle uptake by the brush may emerge when the net charge of the particle in the buffer and the charge of the brush are of the same sign. The origin of this driving force is change in the ionization state of weak cationic and anionic groups on the NP surface provoked by interaction with the brush. In experimental systems, the ionic interactions are complemented by excluded-volume, hydrophobic, and other types of interactions that all together control NP uptake by or expulsion from the brush. Here, we focus on the NP-brush ionic interactions. It is demonstrated that deviation between the buffer pH and the NP isoelectric point, considered usually as the key control parameter, does not uniquely determine the insertion free energy patterns. The latter depends also on the proportion of cationic and anionic groups in the NPs and their specific ionization constants as well as on salt concentration in the buffer. The analysis of the free energy landscape proves that a local minimum in the free energy inside the brush appears, provided the NP charge reversal occurs upon insertion into the brush. This minimum corresponds either to a thermodynamically stable or to a metastable state, depending on the pH offset from the IEP and salt concentration, and is separated from the bulk of the solution by a free energy barrier. The latter, being fairly independent of salt concentration in height, may strongly impede the NP absorption kinetically even when it is thermodynamically favorable. Hence, change reversal is a necessary but insufficient condition for the uptake of the NPs by similarly charged polyelectrolyte brushes.
Collapse
Affiliation(s)
- Tatiana O Popova
- ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V Borisov
- ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l'Adour UMR 5254, Pau 64053, France
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
5
|
Popova TO, Zhulina EB, Borisov OV. Interaction of Polyanionic and Polycationic Brushes with Globular Proteins and Protein-like Nanocolloids. Biomimetics (Basel) 2023; 8:597. [PMID: 38132536 PMCID: PMC10741738 DOI: 10.3390/biomimetics8080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
A large number of experimental studies have demonstrated that globular proteins can be absorbed from the solution by both polycationic and polyanionic brushes when the net charge of protein globules is of the same or of the opposite sign with respect to that of brush-forming polyelectrolyte chains. Here, we overview the results of experimental studies on interactions between globular proteins and polycationic or polyanionic brushes, and present a self-consistent field theoretical model that allows us to account for the asymmetry of interactions of protein-like nanocolloid particles comprising weak (pH-sensitive) cationic and anionic groups with a positively or negatively charged polyelectrolyte brush. The position-dependent insertion free energy and the net charge of the particle are calculated. The theoretical model predicts that if the numbers of cationic and anionic ionizable groups of the protein are approximately equal, then the interaction patterns for both cationic and anionic brushes at equal offset on the "wrong side" from the isoelectric point (IEP), i.e., when the particle and the brush charge are of the same sign, are similar. An essential asymmetry in interactions of particles with polycationic and polyanionic brushes is predicted when fractions of cationic and anionic groups differ significantly. That is, at a pH above IEP, the anionic brush better absorbs negatively charged particles with a larger fraction of ionizable cationic groups and vice versa.
Collapse
Affiliation(s)
- Tatiana O. Popova
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Oleg V. Borisov
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, 64053 Pau, France
| |
Collapse
|
6
|
Zhang Z, Zhang Y, Tian Y, Fu Z, Guo J, He G, Li L, Zhao F, Guo X. Continuous Synthesis of Spherical Polyelectrolyte Brushes by Photo-Emulsion Polymerization in a Microreactor. Polymers (Basel) 2023; 15:4576. [PMID: 38231985 PMCID: PMC10708043 DOI: 10.3390/polym15234576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Nanosized spherical polyelectrolyte brushes (SPBs) are ideal candidates for the preparation of nanometal catalysts, protein separation, and medical diagnostics. Until now, SPBs have been synthesized by photo-emulsion polymerization in a batch reactor, which remains challenging to scale up. This paper reports a successful continuous preparation of SPBs by photo-emulsion polymerization in a self-made microreactor. The effects of residence time, monomer concentration, and feed ratios on the conversion of monomers and SPB structures are systematically investigated by dynamic lighting scattering and transmission electron microscopy. Poly(acrylic acid) (PAA) SPBs obtained in a microreactor exhibiting a narrow size distribution with a short reaction time are very effective in inhibiting the calcium carbonate scale and are comparable to those produced in a batch reactor. This work confirms the feasibility of continuous preparation and scaled-up production of SPBs.
Collapse
Affiliation(s)
- Ziyu Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Yang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Jiangtao Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Guofeng He
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
- Jiangsu Feymer Technology Co., Ltd., Zhangjiagang 215613, China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
7
|
Zhou J, Cai Y, Wan Y, Wu B, Liu J, Zhang X, Hu W, Cohen Stuart MA, Wang J. Protein separation by sequential selective complex coacervation. J Colloid Interface Sci 2023; 650:2065-2074. [PMID: 37355354 DOI: 10.1016/j.jcis.2023.06.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
In food manufacturing and particular biomedical products selected proteins are often required. Obtaining the desired proteins in a pure form from natural resources is therefore important, but often very challenging. Herein, we design a sequential coacervation process that allows to efficiently isolate and purify proteins with different isoelectric points (pIs) from a mixed solution, namely Bovine Serum Albumin (BSA, pI = 4.9) and Peroxidase from Horseradish (HRP, pI = 7.2). The key to separation is introducing a suitable polyelectrolyte that causes selective complex coacervation at appropriate pH and ionic strength. Specifically, polyethyleneimine (PEI), when added into the mixture at pH 6.0, produces a coacervation which exclusively contains BSA, leading to a supernatant solution containing 100 % HRP with a purity of 91 %. After separating the dilute and dense phases, BSA is recovered by adding poly(acrylic acid) (PAA) to the concentrated phase, which displaces BSA from the complex because it interacts more strongly with PEI. The supernatant phase after this step contains approximately 75 % of the initial amount of BSA with a purity of 99 %. Our results confirm that coacervation under well-defined conditions can be selective, enabling separation of proteins with adequate purity. Therefore, the established approach demonstrates a facile and sustainable strategy with potential for protein separation at industrial scale.
Collapse
Affiliation(s)
- Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Bohang Wu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jinbo Liu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xinxin Zhang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China.
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Ma E, Fu Z, Chen K, Sun L, Zhang Y, Liu Z, Li L, Guo X. Smart Protein-Based Fluorescent Nanoparticles Prepared by a Continuous Nanoprecipitation Method for Pesticides' Precise Delivery and Tracing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37221148 DOI: 10.1021/acs.jafc.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is highly desirable to develop smart and green pesticide nanoformulations for improving pesticide targeting and reducing their inherent toxicity. Herein, we demonstrate a continuous nanoprecipitation method to construct a novel type of enzyme-responsive fluorescent nanopesticides (denoted as ABM@BSA-FITC/GA NPs) based on abamectin, fluorescein isothiocyanate isomer (FITC)-modified protein, and food-grade gum arabic. The as-prepared ABM@BSA-FITC/GA NPs exhibit good water dispersibility, excellent storage stability, and enhanced wettability compared to commercial formulations. The controlled release of pesticides can be achieved through protein degradation caused by trypsin. Most importantly, the deposition, distribution, and transport of the ABM@BSA-FITC/GA NPs are precisely tracked on target plants (cabbage and cucumber) by fluorescence. Furthermore, the ABM@BSA-FITC/GA NPs show the high control efficacy against Plutella xylostella L., which is comparable with commercial emulsifiable concentrate formulation. In consideration of its eco-friendly composition and absence of organic solvent, this pesticide nanoformulation has promising potential in sustainable plant protection.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
9
|
Simončič M, Hritz J, Lukšič M. Biomolecular Complexation on the "Wrong Side": A Case Study of the Influence of Salts and Sugars on the Interactions between Bovine Serum Albumin and Sodium Polystyrene Sulfonate. Biomacromolecules 2022; 23:4412-4426. [PMID: 36134887 PMCID: PMC9554918 DOI: 10.1021/acs.biomac.2c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Indexed: 11/28/2022]
Abstract
In the protein purification, drug delivery, food industry, and biotechnological applications involving protein-polyelectrolyte complexation, proper selection of co-solutes and solution conditions plays a crucial role. The onset of (bio)macromolecular complexation occurs even on the so-called "wrong side" of the protein isoionic point where both the protein and the polyelectrolyte are net like-charged. To gain mechanistic insights into the modulatory role of salts (NaCl, NaBr, and NaI) and sugars (sucrose and sucralose) in protein-polyelectrolyte complexation under such conditions, interaction between bovine serum albumin (BSA) and sodium polystyrene sulfonate (NaPSS) at pH = 8.0 was studied by a combination of isothermal titration calorimetry, fluorescence spectroscopy, circular dichroism, and thermodynamic modeling. The BSA-NaPSS complexation proceeds by two binding processes (first, formation of intrapolymer complexes and then formation of interpolymer complexes), both driven by favorable electrostatic interactions between the negatively charged sulfonic groups (-SO3-) of NaPSS and positively charged patches on the BSA surface. Two such positive patches were identified, each responsible for one of the two binding processes. The presence of salts screened both short-range attractive and long-range repulsive electrostatic interactions between both macromolecules, resulting in a nonmonotonic dependence of the binding affinity on the total ionic strength for both binding processes. In addition, distinct anion-specific effects were observed (NaCl < NaBr < NaI). The effect of sugars was less pronounced: sucrose had no effect on the complexation, but its chlorinated analogue, sucralose, promoted it slightly due to the screening of long-range repulsive electrostatic interactions between BSA and NaPSS. Although short-range non-electrostatic interactions are frequently mentioned in the literature in relation to BSA or NaPSS, we found that the main driving force of complexation on the "wrong side" are electrostatic interactions.
Collapse
Affiliation(s)
- Matjaž Simončič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Jozef Hritz
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Miha Lukšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Guo L, Li YH, Fang S, Pan Y, Chen J, Meng YC. Characterization and interaction mechanism of selective protein separation by epsilon-polylysine: The role of hydrophobic attraction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Razzak MA, Jeong MS, Kim MJ, Cho SJ. Unraveling the phase behavior of cricket protein isolate and alginate in aqueous solution. Food Chem 2022; 394:133527. [PMID: 35749882 DOI: 10.1016/j.foodchem.2022.133527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The associative phase behavior of cricket protein isolate (CPI) and sodium alginate (AL) in aqueous solutions was explored using turbidimetry, methylene blue spectroscopy, zeta potentiometry, dynamic light scattering, and confocal microscopy as a function of pH, biopolymer ratio, total biopolymer concentration (CT), and ionic strength. When both biopolymers had net-negative charges, soluble complexes formed between pH 6.0 and 8.0, however when both biopolymers had opposing net charges, insoluble complexes formed as complex coacervates below pH 5.5, defined as pHφ1, followed by precipitates below another critical pH 3.0 (pHp). Increasing the CPI:AL weight ratio or CT facilitated complex formation, and the addition of salts (NaCl/KCl) had a salt-enhancement and salt-reduction impact at low and high salt concentrations, respectively. Ionic interactions between oppositely charged CPI and AL were mainly responsible for the formation of their insoluble complexes, while hydrogen bonding and hydrophobic interactions also played significant roles.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea; Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Soo Jeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min Jeong Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seong-Jun Cho
- Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea; Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
12
|
Hua C, Li Z, Chen K, Sun L, Yu L, Guo X. Tunable Protein Adsorption by Zwitterionic Spherical Poly(CBAA) Brushes Prepared via Photoemulsion Polymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Hua
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ziwei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Liang Sun
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, P. R. China
| | - Liang Yu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, P. R. China
| |
Collapse
|
13
|
Simončič M, Lukšič M. Modulating Role of Co-Solutes in Complexation between Bovine Serum Albumin and Sodium Polystyrene Sulfonate. Polymers (Basel) 2022; 14:1245. [PMID: 35335575 PMCID: PMC8953846 DOI: 10.3390/polym14061245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The action of three types of co-solutes: (i) salts (NaCl, NaBr, NaI), (ii) polymer (polyethylene glycol; PEG-400, PEG-3000, PEG-20000), and (iii) sugars (sucrose, sucralose) on the complexation between bovine serum albumin (BSA) and sodium polystyrene sulfonate (NaPSS) was studied. Three critical pH parameters were extracted from the pH dependence of the solution’s turbidity: pHc corresponding to the formation of the soluble complexes, pHΦ corresponding to the formation of the insoluble complexes, and pHopt corresponding to the charge neutralization of the complexes. In the presence of salts, the formation of soluble and insoluble complexes as well as the charge neutralization of complexes was hindered, which is a consequence of the electrostatic screening of attractive interactions between BSA and NaPSS. Distinct anion-specific trends were observed in which the stabilizing effect of the salt increased in the order: NaCl < NaBr < NaI. The presence of PEG, regardless of its molecular weight, showed no measurable effect on the formation of soluble complexes. PEG-400 and PEG-3000 showed no effect on the formation of insoluble complexes, but PEG-20000 in high concentrations promoted their formation due to the molecular crowding effect. The presence of sugar molecules had little effect on BSA-NaPSS complexation. Sucralose showed a minor stabilizing effect with respect to the onset of complex formation, which was due to its propensity to the protein surface. This was confirmed by the fluorescence quenching assay (Stern-Volmer relationship) and all-atom MD simulations. This study highlights that when evaluating the modulatory effect of co-solutes on protein-polyelectrolyte interactions, (co-solute)-protein interactions and their subsequent impact on protein aggregation must also be considered.
Collapse
Affiliation(s)
- Matjaž Simončič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Hua C, Chen K, Guo X. Boronic acid-functionalized spherical polymer brushes for efficient and selective enrichment of glycoproteins. J Mater Chem B 2021; 9:7557-7565. [PMID: 34551054 DOI: 10.1039/d1tb00835h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycoproteins are related to many biological activities and diseases, and thereby their efficient capture and enrichment for diagnostics and proteomics have emerged to exhibit great significance. However, the lack of materials with high binding capacity and selectivity is still a big obstacle for further application. Herein, we reported a facile and eco-friendly approach to fabricate spherical polymer brushes with multiple boronic acid groups. Specifically, the whole process can be divided into three steps, the polystyrene (PS) core was obtained by traditional emulsion polymerization, followed by immobilization of a home-made photoinitiator. Subsequently, boronic acid-functionalized polymer chains (PBA) were chemically grafted via photo-emulsion polymerization, leading to spherical polymer brushes (PS-PBA) with boronate affinity. The particle size, morphology, and composition of as-prepared spherical polymer brushes were systematically characterized. The characteristics of glycoproteins binding to the spherical polymer brushes under different conditions, including pH values and ionic strength, were also investigated. PS-PBA brushes possess fast binding speed (30 min) and high binding capacity for glycoprotein ovalbumin (OVA) (377.0 mg g-1) under physiological pH conditions at 25 °C, because the low steric hindrance of flexible polymeric PBA chains facilitates the interaction between boronic acid groups and glycoproteins. Moreover, the binding capacity of PS-PBA brushes for glycoprotein OVA was ∼6.7 times higher than that for non-glycoprotein bovine serum albumin (BSA), indicating the excellent selective adsorption. This study provided a facile and efficient approach for the fabrication of boronic acid-functionalized materials that will be useful in the enrichment and separation of glycoproteins for the diagnosis of diseases.
Collapse
Affiliation(s)
- Chen Hua
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China. .,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, People's Republic of China
| |
Collapse
|
15
|
Yang Q, Li L, Sun L, Ye Z, Wang Y, Guo X. Spherical polyelectrolyte brushes as bio‐platforms to integrate platinum nanozyme and glucose oxidase for colorimetric detection of glucose. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qingsong Yang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Li Li
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liang Sun
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan Shihezi University Xinjiang China
| | - Zhishuang Ye
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan Shihezi University Xinjiang China
| |
Collapse
|