1
|
Cao D, Yan Z, Cui D, Khan MY, Duan S, Xie G, He Z, Xing DY, Wang W. A Conceptual Framework to Understand the Self-Assembly of Chemically Active Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10884-10894. [PMID: 38756056 DOI: 10.1021/acs.langmuir.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Colloids that generate chemicals, or "chemically active colloids", can interact with their neighbors and generate patterns via forces arising from such chemical gradients. Examples of such assemblies of chemically active colloids are abundant in the literature, but a unified theoretical framework is needed to rationalize the scattered results. Combining experiments, theory, Brownian dynamics, and finite element simulations, we present here a conceptual framework for understanding how immotile, yet chemically active, colloids assemble. This framework is based on the principle of ionic diffusiophoresis and diffusioosmosis and predicts that a chemically active colloid interacts with its neighbors through short- and long-range interactions that can be either repulsive or attractive, depending on the relative diffusivity of the released cations and anions, and the relative zeta potential of a colloidal particle and the planar surface on which it resides. As a result, 4 types of pairwise interactions arise, leading to 4 different types of colloidal assemblies with distinct patterns. Using short-range attraction and long-range attraction (SALR) systems as an example, we show quantitative agreement between the framework and experiments. The framework is then applied to rationalize a wide range of patterns assembled from chemically active colloids in the literature exhibiting other types of pairwise interactions. In addition, the framework can predict what the assembly looks like with minimal experimental information and help infer ionic diffusivity and zeta potential values in systems where these values are inaccessible. Our results represent a solid step toward building a complete theory for understanding and controlling chemically active colloids, from the molecular level to their mesoscopic superstructures and ultimately to the macroscopic properties of the assembled materials.
Collapse
Affiliation(s)
- Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Ding Yu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
3
|
Svenskaya Y, Pallaeva T. Exploiting Benefits of Vaterite Metastability to Design Degradable Systems for Biomedical Applications. Pharmaceutics 2023; 15:2574. [PMID: 38004553 PMCID: PMC10674703 DOI: 10.3390/pharmaceutics15112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
The widespread application of calcium carbonate is determined by its high availability in nature and simplicity of synthesis in laboratory conditions. Moreover, calcium carbonate possesses highly attractive physicochemical properties that make it suitable for a wide range of biomedical applications. This review provides a conclusive analysis of the results on using the tunable vaterite metastability in the development of biodegradable drug delivery systems and therapeutic vehicles with a controlled and sustained release of the incorporated cargo. This manuscript highlights the nuances of vaterite recrystallization to non-porous calcite, dissolution at acidic pH, biodegradation at in vivo conditions and control over these processes. This review outlines the main benefits of vaterite instability for the controlled liberation of the encapsulated molecules for the development of biodegradable natural and synthetic polymeric materials for biomedical purposes.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Scientific Medical Center, Saratov State University, 410012 Saratov, Russia
| | | |
Collapse
|
4
|
Dan J, Shi S, Sun H, Su Z, Liang Y, Wang J, Zhang W. Micro/nanomotor technology: the new era for food safety control. Crit Rev Food Sci Nutr 2022; 64:2032-2052. [PMID: 36094420 DOI: 10.1080/10408398.2022.2119935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food poisoning caused by eating contaminated food remains a threat to global public health. Making the situation even worse is the aggravated global environmental pollution, which poses a major threat to the safety of agricultural resources. Food adulteration has been rampant owing to negligent national food safety regulations. The speed at which contaminated food is detected and disposed of determines the extent to which consumers' lives are safeguarded and agricultural economic losses are prevented. Micro/nanomotors offer a high-speed mobile loading platform that substantially increases the chemical reaction rates and, accordingly, exhibit great potential as alternatives to conventional detection and degradation techniques. This review summarizes the propulsion modes applicable to micro/nanomotors in food systems and the advantages of using micro/nanomotors, highlighting examples of their potential use in recent years for the detection and removal of food contaminants. Micro/nanomotors are an emerging technology for food applications that is moving toward mass production, simple preparation, and important functions.
Collapse
Affiliation(s)
- Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Wu J, Ma S, Li M, Hu X, Jiao N, Tung S, Liu L. Enzymatic/Magnetic Hybrid Micromotors for Synergistic Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31514-31526. [PMID: 34213305 DOI: 10.1021/acsami.1c07593] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro/nanomotors (MNMs), which propel by transforming various forms of energy into kinetic energy, have emerged as promising therapeutic nanosystems in biomedical applications. However, most MNMs used for anticancer treatment are only powered by one engine or provide a single therapeutic strategy. Although double-engined micromotors for synergistic anticancer therapy can achieve more flexible movement and efficient treatment efficacy, their design remains challenging. In this study, we used a facile preparation method to develop enzymatic/magnetic micromotors for synergetic cancer treatment via chemotherapy and starvation therapy (ST), and the size of micromotors can be easily regulated during the synthetic process. The enzymatic reaction of glucose oxidase, which served as the chemical engine, led to self-propulsion using glucose as a fuel and ST via a reduction in the energy available to cancer cells. Moreover, the incorporation of Fe3O4 nanoparticles as a magnetic engine enhanced the kinetic power and provided control over the direction of movement. Inherent pH-responsive drug release behavior was observed owing to the acidic decomposition of drug carriers in the intracellular microenvironment of cancer cells. This system displayed enhanced anticancer efficacy owing to the synergetic therapeutic strategies and increased cellular uptake in a targeted area because of the improved motion behavior provided by the double engines. Therefore, the demonstrated micromotors are promising candidates for anticancer biomedical microsystems.
Collapse
Affiliation(s)
- Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Ma
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyue Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyue Hu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
6
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|
7
|
Noh W, Jo S, Kim J, Lee TS. Visible-Light-Driven Asymmetric TiO 2-Based Photocatalytic Micromotor Hybridized with a Conjugated Polyelectrolyte and Glucose Oxidase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6301-6310. [PMID: 33982566 DOI: 10.1021/acs.langmuir.1c00729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We fabricated a TiO2-based micromotor that was asymmetrically decorated with a water-soluble conjugated polymer (WSP) on one hemisphere and glucose oxidase (GOx) on the opposite hemisphere. The WSP, which had photocatalytic activity for H2O2 decomposition, enabled motion of the micromotor under visible light. The GOx on the other hemisphere of the micromotor decomposed glucose to produce H2O2 and enabled motion of the micromotor without light irradiation. In addition, WSP and GOx were attached to TiO2 by chemical bonds, providing stability during use. As a result, the micromotor could move by self-generating H2O2 for its own fuel by consuming glucose even without photoirradiation. The micromotor could move faster than without visible light irradiation through the synergistic decomposition of glucose and H2O2 under visible light by the diffusiophoretic mechanism with a speed of 7.49 μm/s.
Collapse
Affiliation(s)
- Wonho Noh
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Seonyoung Jo
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Juang Kim
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
8
|
Guo X, Li X, Chan L, Huang W, Chen T. Edible CaCO 3 nanoparticles stabilized Pickering emulsion as calcium-fortified formulation. J Nanobiotechnology 2021; 19:67. [PMID: 33663532 PMCID: PMC7934247 DOI: 10.1186/s12951-021-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background Nanoparticles assembled from food-grade calcium carbonate have attracted attention because of their biocompatibility, digestibility, particle and surface features (such as size, surface area, and partial wettability), and stimuli-responsiveness offered by their acid-labile nature. Results Herein, a type of edible oil-in-water Pickering emulsion was structured by calcium carbonate nanoparticles (CaCO3 NPs; mean particle size: 80 nm) and medium-chain triglyceride (MCT) for delivery of lipophilic drugs and simultaneous oral supplementation of calcium. The microstructure of the as-made CaCO3 NPs stabilized Pickering emulsion can be controlled by varying the particle concentration (c) and oil volume fraction (φ). The emulsification stabilizing capability of the CaCO3 NPs also favored the formation of high internal phase emulsion at a high φ of 0.7–0.8 with excellent emulsion stability at room temperature and at 4 °C, thus protecting the encapsulated lipophilic bioactive, vitamin D3 (VD3), against degradation. Interestingly, the structured CaCO3 NP-based Pickering emulsion displayed acid-trigged demulsification because of the disintegration of the CaCO3 NPs into Ca2+ in a simulated gastric environment, followed by efficient lipolysis of the lipid in simulated intestinal fluid. With the encapsulation and delivery of the emulsion, VD3 exhibited satisfying bioavailability after simulated gastrointestinal digestion. Conclusions Taken together, the rationally designed CaCO3 NP emulsion system holds potential as a calcium-fortified formulation for food, pharmaceutical and biomedical applications.![]()
Collapse
Affiliation(s)
- Xiaoming Guo
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoying Li
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Leung Chan
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|