1
|
Huang S, Su G, Yang L, Yue L, Chen L, Huang J, Yang F. Single-Molecule-Level Quantification Based on Atomic Force Microscopy Data Reveals the Interaction between Melittin and Lipopolysaccharide in Gram-Negative Bacteria. Int J Mol Sci 2024; 25:10508. [PMID: 39408837 PMCID: PMC11477153 DOI: 10.3390/ijms251910508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction forces and mechanical properties of the interaction between melittin (Mel) and lipopolysaccharide (LPS) are considered to be crucial driving forces for Mel when killing Gram-negative bacteria (GNB). However, how their interaction forces perform at the single-molecule level and the dissociation kinetic characteristics of the Mel/LPS complex remain poorly understood. In this study, the single-molecule-level interaction forces between Mel and LPSs from E. coli K-12, O55:B5, O111:B4, and O128:B12 were explored using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS). AFM-based dynamic force spectroscopy (DFS) and an advanced analytical model were employed to investigate the kinetic characteristics of the Mel/LPS complex dissociation. The results indicated that Mel could interact with both rough (R)-form LPS (E. coli K-12) and smooth (S)-form LPSs (E. coli O55:B5, O111:B4, and O128:B12). The S-form LPS showed a more robust interaction with Mel than the R-form LPS, and a slight difference existed in the interaction forces between Mel and the diverse S-form LPS. Mel interactions with the S-form LPSs showed greater specific and non-specific interaction forces than the R-form LPS (p < 0.05), as determined by AFM-based SMFS. However, there was no significant difference in the specific and non-specific interaction forces among the three samples of S-form LPSs (p > 0.05), indicating that the variability in the O-antigen did not affect the interaction between Mel and LPSs. The DFS result showed that the Mel/S-form LPS complexes had a lower dissociation rate constant, a shorter energy barrier width, a longer bond lifetime, and a higher energy barrier height, demonstrating that Mel interacted with S-form LPS to form more stable complexes. This research enhances the existing knowledge of the interaction micromechanics and kinetic characteristics of Mel and LPS at the single-molecule level. Our research may help with the design and evaluation of new anti-GNB drugs.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Yang
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Liangguang Yue
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| |
Collapse
|
2
|
Wu Y, Wang T, Fay JDB, Zhang L, Hirth S, Hankett J, Chen Z. Silane Effects on Adhesion Enhancement of 2K Polyurethane Adhesives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:19016-19026. [PMID: 38085956 DOI: 10.1021/acs.langmuir.3c03166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
With excellent properties such as great flexibility, outstanding chemical resistance, and superb mechanical strength, two-part polyurethane (2K PU) adhesives have been widely applied in many applications, including those in transportation and construction. Despite the extensive use, their adhesion to nonpolar polymer substrates still needs to be improved and has been widely studied. The incorporation of silane molecules and the use of plasma treatment on substrate surfaces are two popular methods to increase the adhesion of 2K PU adhesives, but their detailed adhesion enhancement mechanisms are still largely unknown. In this research, sum frequency generation (SFG) vibrational spectroscopy was used to probe the influence of added or coated silanes on the interfacial structure at the buried polypropylene (PP)/2K PU adhesive interface in situ. How plasma treatment on PP could improve adhesion was also investigated. To achieve maximum adhesion, two methods to involve silanes were studied. In the first method, silanes were directly mixed with the 2K PU adhesive before use. In the second method, silane molecules were spin-coated onto the PP substrate before the PU adhesive applied. It was found that the first method could not improve the 2K PU adhesion to PP, while the second method could substantially enhance such adhesion. SFG studies demonstrated that with the second method silane molecules chemically reacted at the interface to connect PP and 2K PU adhesive to improve the adhesion. With the first method, silane molecules could not effectively diffuse to the interface to enhance adhesion. In this research, plasma treatment was also found to be a useful method to improve the adhesion of the 2K PU adhesive to nonpolar polymer materials.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tianle Wang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jonathan D B Fay
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Lu Zhang
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sabine Hirth
- Material Physics and Analytics - B007, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Wu Y, Wang T, Gao J, Zhang L, Fay JDB, Hirth S, Hankett J, Chen Z. Molecular Behavior of 1K Polyurethane Adhesive at Buried Interfaces: Plasma Treatment, Annealing, and Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3273-3285. [PMID: 36808974 DOI: 10.1021/acs.langmuir.2c03084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-part (1K) polyurethane (PU) adhesive has excellent bulk strength and environmental resistance. It is therefore widely used in many fields, such as construction, transportation, and flexible lamination. However, when contacting non-polar polymer materials, the poor adhesion of 1K PU adhesive may not be able to support its outdoor applications. To solve this problem, plasma treatment of the non-polar polymer surface has been utilized to improve adhesion between the polymer and 1K PU adhesive. The detailed mechanisms of adhesion enhancement of the 1K PU adhesive caused by plasma treatment on polymer substrates have not been studied extensively because adhesion is a property of buried interfaces which are difficult to probe. In this study, sum frequency generation (SFG) vibrational spectroscopy was used to investigate the buried PU/polypropylene (PP) interfaces in situ nondestructively. Fourier-transform infrared spectroscopy, the X-ray diffraction technique, and adhesion tests were used as supplemental methods to SFG in the study. The 1K PU adhesive is a moisture-curing adhesive and usually needs several days to be fully cured. Here, time-dependent SFG experiments were conducted to monitor the molecular behaviors at the buried 1K PU adhesive/PP interfaces during the curing process. It was found that the PU adhesives underwent rearrangement during the curing process with functional groups gradually becoming ordered at the interface. Stronger adhesion between the plasma-treated PP substrate and the 1K PU adhesive was observed, which was achieved by the interfacial chemical reactions and a more rigid interface. Annealing the samples increased the reaction speed and enhanced the bulk PU strength with higher crystallinity. In this research, molecular mechanisms of adhesion enhancement of the 1K PU adhesive caused by the plasma treatment on PP and by annealing the PU/PP samples were elucidated.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianle Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Zhang
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Jonathan D B Fay
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sabine Hirth
- BASF SE, RAA/OS-B007, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Wang C, Ma YH, Han X, Lu X. Re-Examining Interaction between Antimicrobial Peptide Aurein 1.2 and Model Cell Membranes via SFG. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:690-699. [PMID: 36576332 DOI: 10.1021/acs.langmuir.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aurein 1.2 (Aur), a highly efficient 13-residue antimicrobial peptide (AMP) with a broad-spectrum antibiotic activity originally derived from the Australian frog skin secretions, can nonspecifically disrupt bacterial membranes. To deeply understand the molecular-level detail of the antimicrobial mechanism, here, we artificially established comparative experimental models to investigate the interfacial interaction process between Aur and negatively charged model cell membranes via sum frequency generation vibrational spectroscopy. Sequencing the vibrational signals of phenyl, C-H, and amide groups from Aur has characteristically helped us differentiate between the initial adsorption and subsequent insertion steps upon mutual interaction between Aur and the charged lipids. The phenyl group at the terminal phenylalanine residue can act as an anchor in the adsorption process. The time-dependent signal intensity of α-helices showed a sharp rise once the Aur molecules came into contact with the negatively charged lipids, indicating that the adsorption process was ongoing. Insertion of Aur into the charged lipids then offered the detectable interfacial C-H signals from Aur. The achiral and chiral amide I signals suggest that Aur had formed β-folding-like aggregates after interacting with the charged lipids, along with the subsequent descending α-helical amide I signals. The above-mentioned experimental results provide the molecular-level detail on how the Aur molecules interact with the cell membranes, and such a mechanism study can offer the necessary support for the AMP design and later application.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Andre JS, Grant J, Greyson E, Chen X, Tucker C, Drumright R, Mohler C, Chen Z. Molecular Interactions between Amino Silane Adhesion Promoter and Acrylic Polymer Adhesive at Buried Silica Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6180-6190. [PMID: 35512318 DOI: 10.1021/acs.langmuir.2c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the influence of an amino silane (3-(2-aminoethylamino)-propyldimethoxymethylsilane, AEAPS) on the interfacial structure and adhesion of butyl acrylate/methyl methacrylate copolymers (BAMMAs) to silica was investigated by sum frequency generation vibrational spectroscopy (SFG). Small amounts of methacrylic acid, MAA, were included in the BAMMA polymerizations to assess the impact of carboxylic acid functionality on the glass interface. SFG was used to probe the O-H and C═O groups of incorporated MAA, ester C═O groups of BAMMA, and CH groups from all species at the silica interfaces. The addition of AEAPS resulted in a significant change in the molecular structure of the polymer at the buried interface with silica due to specific interactions between the BAMMA polymers and silane. SFG results were consistent with the formation of ionic bonds between the primary and secondary amines of the AEAPS tail group and the MAA component of the polymer, as evidenced by the loss of the MAA O-H and C═O signals at the interface. It is extensively reported in the literature that methoxy head groups of an amino silane chemically bind to the silanols of glass, leaving the amine groups available to react with various chemical functionalities. Our results are consistent with this scenario and support an adhesion promotion mechanism of amino silane with various aspects: (1) the ionic bond formation between the tail amine group and acid functionality on BAMMA, (2) the chemical coupling between the silane head group and glass, (3) migration of more ester C═O groups to the interface with order, and (4) disordering or reduced levels of CH groups at the interface. These results are important for better understanding of the mechanisms and effect of amino silanes on the adhesion between acrylate polymers and glass substrates in a variety of applications.
Collapse
Affiliation(s)
- John S Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph Grant
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Eric Greyson
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Xiaoyun Chen
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Christopher Tucker
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Ray Drumright
- Dow Coating Materials, Midland, Michigan 48674, United States
| | - Carol Mohler
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Dos and don'ts tutorial for sample alignment in sum frequency generation spectroscopy. Biointerphases 2022; 17:031203. [PMID: 35549393 DOI: 10.1116/6.0001851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This Tutorial aims to provide a concise yet practical guideline for different scenarios that one may face in a sum frequency generation (SFG) spectroscopy laboratory, especially when it comes to sample alignment. The effort is made to reconstruct the real and often challenging sample alignment conditions for a broad range of liquid or solid samples interfacing solid, liquid, or gas phases, with a pedagogical approach. Both newcomer operators of an SFG setup without a strong experience in nonlinear spectroscopy and the more experienced SFG users can utilize the approaches that are provided in this Tutorial for an easier and more reliable sample alignment in their SFG laboratories.
Collapse
|
7
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
8
|
Lin T, Wu Y, Santos E, Chen X, Kelleher-Ferguson J, Tucker C, Ahn D, Mohler C, Chen Z. Probing Covalent Interactions at a Silicone Adhesive/Nylon Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2590-2600. [PMID: 35166546 DOI: 10.1021/acs.langmuir.1c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent bonding is one of the most robust forms of intramolecular interaction between adhesives and substrates. In contrast to most noncovalent interactions, covalent bonds can significantly enhance both the interfacial strength and durability. To utilize the advantages of covalent bonding, specific chemical reactions are designed to occur at interfaces. However, interfacial reactions are difficult to probe in situ, particularly at the buried interfaces found in well-bonded adhesive joints. In this work, sum frequency generational (SFG) vibrational spectroscopy was used to directly examine and analyze the interfacial chemical reactions and related molecular changes at buried nylon/silicone elastomer interfaces. For self-priming elastomeric silicone adhesives, silane coupling agents have been extensively used as adhesion promoters. Here with SFG, the interfacial chemical reactions between nylon and two alkoxysilane adhesion promoters with varied functionalities (maleic anhydride (MAH) and epoxy) formulated into the silicone were observed and investigated. Evidence of reactions between the organofunctional group of each silane and reactive groups on the polyamide was found at the buried interface between the cured silicone elastomer and nylon. The adhesion strength at the nylon/cured silicone interfaces was substantially enhanced with both silane additives. SFG results elucidated the mechanisms of organo-silane adhesion promotion for silicone at the molecular level. The ability to probe and analyze detailed interfacial reactions at buried nylon/silicone interfaces demonstrated that SFG is a powerful analytical technique to aid the design and optimization of materials with desired interfacial properties.
Collapse
Affiliation(s)
| | | | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - Chris Tucker
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | |
Collapse
|
9
|
Taneda H, Yamada NL, Nemoto F, Minagawa Y, Matsuno H, Tanaka K. Modification of a Polymer Surface by Partial Swelling Using Nonsolvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14941-14949. [PMID: 34904431 DOI: 10.1021/acs.langmuir.1c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface modification without changing the physical properties in the bulk is of pivotal importance for the development of polymers as devices. We recently proposed a simple surface functionalization method for polymer films by partial swelling using a nonsolvent and demonstrated the incorporation of poly(2-methoxyethyl acrylate) (PMEA), which has an excellent antibiofouling ability, only into the outermost region of a poly(methyl methacrylate) (PMMA) film. We here extend this technology to another versatile polymer, polystyrene (PS). In this case, PS and PMEA have different solubility parameters making it difficult to select a suitable solvent, which is a nonsolvent for PS and a good solvent for PMEA, unlike the combination of PMMA with PMEA. Thus, such a solvent was first sought by examining the swelling behavior of PS films in contact with various alcohols. Once a mixed solvent of methanol/1-butanol (50/50 (v/v)) was chosen, PMEA chains could be successfully incorporated at the outermost region of the PS film. Atomic force microscopy in conjunction with neutron reflectivity revealed that chains of PMEA incorporated in the PS surface region were well swollen in water. This leads to an excellent ability to suppress the adhesion of platelets on the PS film.
Collapse
Affiliation(s)
- Hidenobu Taneda
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Fumiya Nemoto
- Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Yasuhisa Minagawa
- Sumitomo Rubber Industries, Ltd., 2-1-1 Tsutsui-cho, Chuo-ku, Kobe 651-0071, Japan
| | - Hisao Matsuno
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Zhang S, Hsu L, Toolis A, Li B, Zhou J, Lin T, Chen Z. Investigation of the Atmospheric Moisture Effect on the Molecular Behavior of an Isocyanate-Based Primer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12705-12713. [PMID: 34668715 DOI: 10.1021/acs.langmuir.1c02135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A primer coating is engineered to facilitate compatibility between products like adhesives, sealants, and potting compounds and targeted substrates. Prolonged exposure of isocyanate-based primer surfaces to the environment is known to negatively affect the interfacial adhesion between itself and the products subsequently applied on top of it. However, the molecular behavior behind this observed phenomenon remained to be further investigated. In this study, sum frequency generation (SFG) vibrational spectroscopy, a nonlinear optical spectroscopic technique, was applied to study the surface of an isocyanate-based primer exposed to different environments at the molecular level. Atmospheric moisture was considered to be a potential factor in impairing the adhesion performance of the primer, and thus, time- and humidity-dependent experiments were executed to monitor the molecular behavior at the primer surface using SFG. In addition, 180° peel testing experiments were conducted to measure the adhesion properties of primers after being exposed to the corresponding conditions to correlate to SFG results and establish a chemical structure-macroscopic performance relationship. This study on the changes at the primer surface in different environments with varied humidity levels as a function of time aims to provide an in-depth understanding of the moisture effect on isocyanate-based primers. These learnings may also be helpful toward exploring a broader range of coatings and surface layers and improving customer product use guidelines.
Collapse
Affiliation(s)
| | - Lorraine Hsu
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Amy Toolis
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | | | | | | | | |
Collapse
|
11
|
Shi L, McMillan JR, Yu D, Chen X, Tucker CJ, Wasserman E, Mohler C, Chen Z. Effect of Surfactant Concentration and Hydrophobicity on the Ordering of Water at a Silica Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10806-10817. [PMID: 34455791 DOI: 10.1021/acs.langmuir.1c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of nonionic surfactants is mediated by the interfacial interactions at the solid-liquid interface. Here we applied sum frequency generation (SFG) vibrational spectroscopy to probe the molecular structure of the silica-nonionic surfactant solution interface in situ, supplemented by quartz crystal microbalance with dissipation monitoring (QCM-D) and molecular dynamics (MD) simulations. The combined studies elucidated the effects of nonionic surfactant solution concentration, surfactant composition, and rinsing on the silica-surfactant solution interfacial structure. The nonionic surfactants studied include ethylene-oxide (EO) and butylene oxide (BO) components with different ratios. It was found that the CH groups of the surfactants at the silica-surfactant solution interfaces are disordered, but the interfacial water molecules are ordered, generating strong SFG OH signals. Solutions with higher concentrations of surfactant lead to a slightly higher amount of adsorbed surfactant at the silica interface, resulting in more water molecules being ordered at the interface, or a higher ordering of water molecules at the interface, or both. MD simulation results indicated that the nonionic surface molecules preferentially adsorb onto silanol sites on silica. A surfactant with a higher EO/BO ratio leads to more water molecules being ordered and a higher degree of ordering of water molecules at the silica-surfactant solution interface, exhibiting stronger SFG OH signal, although less material is adsorbed according to the QCM-D data. A thin layer of surfactants remained on the silica surface after multiple water rinses. To the best of our knowledge, this is the first time the combined approaches of SFG, QCM-D and MD simulation techniques have been applied to study nonionic surfactants at the silica-solution interface, which enhances our understanding on the interfacial interactions between nonionic surfactants, water and silica. The knowledge obtained from this study can be helpful to design the optimal surfactant concentration and composition for future applications.
Collapse
Affiliation(s)
- Lirong Shi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janet R McMillan
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Decai Yu
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - Eric Wasserman
- Dow Home & Personal Care, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Zhang C, Gao J, Hankett J, Varanasi P, Kerobo CO, Zhao S, Chen Z. Interfacial Structure and Interfacial Tension in Model Carbon Fiber-Reinforced Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5311-5320. [PMID: 33880927 DOI: 10.1021/acs.langmuir.1c00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon fiber-reinforced plastics (CFRPs) are widely used materials with outstanding mechanical properties. The wettability between the polymer matrix and carbon fiber in the interphase region significantly influences the strength of the composite. Sizing agents consisting of multiple components are therefore frequently applied to improve wetting and interfacial adhesion between polymers and carbon fiber in CFRPs. However, the complex compositions of sizing solutions make detailed interpretations of their impacts on interfacial wetting difficult. In this work, surface-sensitive sum frequency generation (SFG) spectroscopy was utilized to characterize the sizing/polymer and sizing/carbon fiber interfacial structures to gain molecular-level understandings of the wetting improvements afforded by sizing. A mixture sizing solution containing polyethylenimine (PEI, adhesion promoter) and Lutensol (surfactant) was investigated when contacting nylon (model plastics), polypropylene (model plastics), and graphite (model carbon fiber). Our results demonstrated that although the addition of the surfactant led to an interfacial tension decrease (in comparison to pure PEI solution) on nylon and polypropylene, the interfacial tension was surprisingly increased on graphite, contrasting with the commonly accepted function of surfactants. SFG characterizations revealed the multilayer molecular structures at these buried interfaces. The peculiar interfacial tension increase at the graphite/sizing interface was then correlated to the strong amine-π interactions between PEI and graphite. PEI was therefore demonstrated to be an effective adhesion promoter for carbon fiber. This article reports the first investigation of (polymer + surfactant) complex structures at solid-liquid interfaces. The valuable structural insights obtained by SFG analysis enable more accurate understandings of the composition-wettability (structure-function) relationship. These detailed understandings of interactions between sizing and the substrates promote more informed and optimized selections of sizing formulae.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Prabodh Varanasi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Charles O Kerobo
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Shouxun Zhao
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|